Photo AI

Expand and simplify $ ( \\sqrt{7} + 2) \\cdot (\\sqrt{7} - 2) .$ - Edexcel - A-Level Maths Pure - Question 5 - 2009 - Paper 1

Question icon

Question 5

Expand-and-simplify---$---(--\\sqrt{7}-+-2)--\\cdot-(\\sqrt{7}---2)-.$-Edexcel-A-Level Maths Pure-Question 5-2009-Paper 1.png

Expand and simplify $ ( \\sqrt{7} + 2) \\cdot (\\sqrt{7} - 2) .$

Worked Solution & Example Answer:Expand and simplify $ ( \\sqrt{7} + 2) \\cdot (\\sqrt{7} - 2) .$ - Edexcel - A-Level Maths Pure - Question 5 - 2009 - Paper 1

Step 1

Expand the expression

96%

114 rated

Answer

To expand the expression, we can use the distributive property (also known as the FOIL method for binomials):

(7+2)(72)=77+7(2)+27+2(2)(\sqrt{7} + 2)(\sqrt{7} - 2) = \sqrt{7} \cdot \sqrt{7} + \sqrt{7} \cdot (-2) + 2 \cdot \sqrt{7} + 2 \cdot (-2)

Calculating each term:

  1. (\sqrt{7} \cdot \sqrt{7} = 7)
  2. (\sqrt{7} \cdot (-2) = -2\sqrt{7})
  3. (2 \cdot \sqrt{7} = 2\sqrt{7})
  4. (2 \cdot (-2) = -4)

Now, substituting these back in:

727+2747 - 2\sqrt{7} + 2\sqrt{7} - 4

Step 2

Combine like terms

99%

104 rated

Answer

Combining the like terms:

74+(27+27)=3+0=37 - 4 + (-2\sqrt{7} + 2\sqrt{7}) = 3 + 0 = 3

Thus, the simplified expression is:

33

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;