Photo AI

Find all the solutions of $$2 \cos 2\theta = 1 - 2 \sin \theta$$ in the interval $0 \leq \theta < 360^\circ$. - Edexcel - A-Level Maths Pure - Question 5 - 2011 - Paper 4

Question icon

Question 5

Find-all-the-solutions-of--$$2-\cos-2\theta-=-1---2-\sin-\theta$$--in-the-interval-$0-\leq-\theta-<-360^\circ$.-Edexcel-A-Level Maths Pure-Question 5-2011-Paper 4.png

Find all the solutions of $$2 \cos 2\theta = 1 - 2 \sin \theta$$ in the interval $0 \leq \theta < 360^\circ$.

Worked Solution & Example Answer:Find all the solutions of $$2 \cos 2\theta = 1 - 2 \sin \theta$$ in the interval $0 \leq \theta < 360^\circ$. - Edexcel - A-Level Maths Pure - Question 5 - 2011 - Paper 4

Step 1

Substituting to form a quadratic

96%

114 rated

Answer

Start by rearranging the equation:

2cos2θ=12sinθ2\cos 2\theta = 1 - 2\sin \theta

Using the double angle identity for cosine, we can substitute:

2cos2θ=2(12sin2θ)2\cos 2\theta = 2(1 - 2\sin^2 \theta)

which leads to:

2(12sin2θ)=12sinθ2(1 - 2\sin^2 \theta) = 1 - 2 \sin \theta

Step 2

Form an equation in sine

99%

104 rated

Answer

This simplifies to:

24sin2θ=12sinθ2 - 4\sin^2 \theta = 1 - 2\sin \theta

Rearranging gives us:

4sin2θ2sinθ1=04\sin^2 \theta - 2\sin \theta - 1 = 0

We can treat this as a standard quadratic equation in the form:

asin2θ+bsinθ+c=0a\sin^2 \theta + b\sin \theta + c = 0

Step 3

Applying the quadratic formula

96%

101 rated

Answer

Identifying the coefficients: a=4,b=2,c=1a = 4, b = -2, c = -1

We apply the quadratic formula:

sinθ=b±b24ac2a\sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Calculating the discriminant:

D=(2)244(1)=4+16=20D = (-2)^2 - 4 \cdot 4 \cdot (-1) = 4 + 16 = 20

Now substituting into the formula:

sinθ=2±208\sin \theta = \frac{2 \pm \sqrt{20}}{8}

Step 4

Finding sine values

98%

120 rated

Answer

We simplify:

sinθ=2±258=1±54\sin \theta = \frac{2 \pm 2\sqrt{5}}{8} = \frac{1 \pm \sqrt{5}}{4}

This gives us two possible values for \sin \theta:

  1. (\sin \theta = \frac{1 + \sqrt{5}}{4})
  2. (\sin \theta = \frac{1 - \sqrt{5}}{4})

We will only consider values within the range 0θ<3600 \leq \theta < 360^\circ.

Step 5

Finding the angles

97%

117 rated

Answer

For each sine value, we determine angles:

  1. For (\sin \theta = \frac{1 + \sqrt{5}}{4}):

    • This will give angles in quadrants 1 and 2.
  2. For (\sin \theta = \frac{1 - \sqrt{5}}{4}):

    • Check if this value is valid (remains between -1 and 1).
    • The angles can also be derived from the reference angle accordingly considering sine's properties.

Using inverse sine for valid values, the solutions yield:

θ={54,126,198,342}\theta = \{54^\circ, 126^\circ, 198^\circ, 342^\circ\}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;