Photo AI

4. (a) Express $$ ext{lim}_{eta o 0} extstyle \,\, \\sum_{x=2.1}^{6.3} rac{2}{x} \, ext{d}x $$ as an integral - Edexcel - A-Level Maths Pure - Question 6 - 2022 - Paper 1

Question icon

Question 6

4.-(a)-Express-$$--ext{lim}_{eta--o-0}--extstyle-\,\,-\\sum_{x=2.1}^{6.3}--rac{2}{x}-\,--ext{d}x-$$-as-an-integral-Edexcel-A-Level Maths Pure-Question 6-2022-Paper 1.png

4. (a) Express $$ ext{lim}_{eta o 0} extstyle \,\, \\sum_{x=2.1}^{6.3} rac{2}{x} \, ext{d}x $$ as an integral. (b) Hence show that $$ ext{lim}_{eta o 0} e... show full transcript

Worked Solution & Example Answer:4. (a) Express $$ ext{lim}_{eta o 0} extstyle \,\, \\sum_{x=2.1}^{6.3} rac{2}{x} \, ext{d}x $$ as an integral - Edexcel - A-Level Maths Pure - Question 6 - 2022 - Paper 1

Step 1

Express lim α→0 ∑ 2αx as an integral

96%

114 rated

Answer

We start by rewriting the limit as an integral:

ext{lim}_{eta o 0} extstyle \, \\sum_{x=2.1}^{6.3} rac{2}{x} \, ext{d}x = \int_{2.1}^{6.3} \frac{2}{x} \, ext{d}x.

This integral expresses the sum as the continuous limit of the Riemann sum as eta approaches zero.

Step 2

Show that lim α→0 ∑ 2αx = ln k

99%

104 rated

Answer

To find the value of the integral:

2.16.32xextdx=2lnx2.16.3=2ln(6.3)2ln(2.1).\int_{2.1}^{6.3} \frac{2}{x} \, ext{d}x = 2 \ln|x| \bigg|_{2.1}^{6.3} = 2 \ln(6.3) - 2 \ln(2.1).

Using properties of logarithms, we have:

2ln(6.3)2ln(2.1)=2ln(6.32.1)=ln(6.322.12)=ln(9).2 \ln(6.3) - 2 \ln(2.1) = 2 \ln \left( \frac{6.3}{2.1} \right) = \ln \left( \frac{6.3^2}{2.1^2} \right) = \ln(9).

Thus, we find that:

\text{lim}_{eta o 0} extstyle \, \\sum_{x=2.1}^{6.3} rac{2}{x} \, ext{d}x = \ln(9).

This shows that k=9k = 9, confirming that:

\text{lim}_{eta o 0} \\sum_{x=2.1}^{6.3} \frac{2}{x} = \text{ln}k,\ ext{ where } k = 9.$

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;