Photo AI

The curve shown in Figure 2 has parametric equations $x = ext{sin}(t), \, y = ext{sin}\left(t + \frac{\pi}{6}\right), \quad \frac{\pi}{2} < t < \frac{\pi}{2}.$ (a) Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{6}.$ (b) Show that a cartesian equation of the curve is y = \frac{\sqrt{3}}{2} + \frac{1}{2}\sqrt{(1 - x^2)}, \quad -1 < x < 1. - Edexcel - A-Level Maths Pure - Question 6 - 2006 - Paper 6

Question icon

Question 6

The-curve-shown-in-Figure-2-has-parametric-equations--$x-=--ext{sin}(t),-\,-y-=--ext{sin}\left(t-+-\frac{\pi}{6}\right),-\quad-\frac{\pi}{2}-<-t-<-\frac{\pi}{2}.$--(a)-Find-an-equation-of-the-tangent-to-the-curve-at-the-point-where-$t-=-\frac{\pi}{6}.$--(b)-Show-that-a-cartesian-equation-of-the-curve-is--y-=-\frac{\sqrt{3}}{2}-+-\frac{1}{2}\sqrt{(1---x^2)},-\quad--1-<-x-<-1.-Edexcel-A-Level Maths Pure-Question 6-2006-Paper 6.png

The curve shown in Figure 2 has parametric equations $x = ext{sin}(t), \, y = ext{sin}\left(t + \frac{\pi}{6}\right), \quad \frac{\pi}{2} < t < \frac{\pi}{2}.$ (... show full transcript

Worked Solution & Example Answer:The curve shown in Figure 2 has parametric equations $x = ext{sin}(t), \, y = ext{sin}\left(t + \frac{\pi}{6}\right), \quad \frac{\pi}{2} < t < \frac{\pi}{2}.$ (a) Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{6}.$ (b) Show that a cartesian equation of the curve is y = \frac{\sqrt{3}}{2} + \frac{1}{2}\sqrt{(1 - x^2)}, \quad -1 < x < 1. - Edexcel - A-Level Maths Pure - Question 6 - 2006 - Paper 6

Step 1

Find an equation of the tangent to the curve at the point where $t = \frac{\pi}{6}$

96%

114 rated

Answer

To find the tangent line, we need to compute the derivatives of xx and yy with respect to tt:

  1. Differentiate both parametric equations:

    • x=sin(t)dxdt=cos(t)x = \text{sin}(t) \Rightarrow \frac{dx}{dt} = \text{cos}(t)
    • y=sin(t+π6)dydt=cos(t+π6)y = \text{sin}\left(t + \frac{\pi}{6}\right) \Rightarrow \frac{dy}{dt} = \text{cos}\left(t + \frac{\pi}{6}\right)
  2. Find dydx\frac{dy}{dx} using the chain rule: dydx=dydtdxdt=cos(t+π6)cos(t)\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\text{cos}\left(t + \frac{\pi}{6}\right)}{\text{cos}(t)}

  3. Evaluate at t=π6t = \frac{\pi}{6}:

    • dxdt=cos(π6)=32\frac{dx}{dt} = \text{cos}\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}
    • dydt=cos(π6+π6)=cos(π3)=12\frac{dy}{dt} = \text{cos}\left(\frac{\pi}{6} + \frac{\pi}{6}\right) = \text{cos}\left(\frac{\pi}{3}\right) = \frac{1}{2}
    • Thus, dydx=1232=13\frac{dy}{dx} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}.
  4. Find the point on the curve where t=π6t = \frac{\pi}{6}:

    • x=sin(π6)=12x = \text{sin}\left(\frac{\pi}{6}\right) = \frac{1}{2}
    • y=sin(π6+π6)=sin(π3)=32y = \text{sin}\left(\frac{\pi}{6} + \frac{\pi}{6}\right) = \text{sin}\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}.
    • Therefore, the point is (12,32)\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right).
  5. Now we can form the equation of the tangent line using the point-slope form: yy1=m(xx1)y - y_1 = m(x - x_1) where m=13,  (x1,y1)=(12,32)m = \frac{1}{\sqrt{3}}, \; (x_1, y_1) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right).

    • This leads to: y32=13(x12).y - \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}\left(x - \frac{1}{2}\right).

Step 2

Show that a cartesian equation of the curve is $y = \frac{\sqrt{3}}{2} + \frac{1}{2}\sqrt{(1 - x^2)}, -1 < x < 1$

99%

104 rated

Answer

To show the Cartesian equation:

  1. Since x=sin(t)x = \text{sin}(t), we can express tt as: t=sin1(x).t = \text{sin}^{-1}(x).

  2. Substitute this into the equation for yy: y=sin(sin1(x)+π6).y = \text{sin}\left(\text{sin}^{-1}(x) + \frac{\pi}{6}\right).

  3. Use the sine addition formula: y=sin(sin1(x))cos(π6)+cos(sin1(x))sin(π6).y = \text{sin}\left(\text{sin}^{-1}(x)\right)\text{cos}\left(\frac{\pi}{6}\right) + \text{cos}\left(\text{sin}^{-1}(x)\right)\text{sin}\left(\frac{\pi}{6}\right).

  4. With values:

    • sin(sin1(x))=x\text{sin}\left(\text{sin}^{-1}(x)\right) = x,
    • cos(π6)=32,\text{cos}\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, and
    • sin(π6)=12,\text{sin}\left(\frac{\pi}{6}\right) = \frac{1}{2}, we substitute to get: y=32x+121x2.y = \frac{\sqrt{3}}{2}x + \frac{1}{2}\sqrt{1 - x^2}.
  5. Rearranging yields: y32=121x2.y - \frac{\sqrt{3}}{2} = \frac{1}{2}\sqrt{1 - x^2}.

This matches the required form of the Cartesian equation with condition 1<x<1-1 < x < 1.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;