Photo AI

Show that: (i) \( \frac{\cos 2x}{\cos x + \sin x} = \cos x - \sin x, \quad x \neq (n - \frac{1}{4})\pi, \; n \in \mathbb{Z} - Edexcel - A-Level Maths Pure - Question 8 - 2006 - Paper 5

Question icon

Question 8

Show-that:--(i)--\(-\frac{\cos-2x}{\cos-x-+-\sin-x}-=-\cos-x---\sin-x,-\quad-x-\neq-(n---\frac{1}{4})\pi,-\;-n-\in-\mathbb{Z}-Edexcel-A-Level Maths Pure-Question 8-2006-Paper 5.png

Show that: (i) \( \frac{\cos 2x}{\cos x + \sin x} = \cos x - \sin x, \quad x \neq (n - \frac{1}{4})\pi, \; n \in \mathbb{Z}. \) (ii) \( \frac{1}{2} (\cos 2x - ... show full transcript

Worked Solution & Example Answer:Show that: (i) \( \frac{\cos 2x}{\cos x + \sin x} = \cos x - \sin x, \quad x \neq (n - \frac{1}{4})\pi, \; n \in \mathbb{Z} - Edexcel - A-Level Maths Pure - Question 8 - 2006 - Paper 5

Step 1

(i) \( \frac{\cos 2x}{\cos x + \sin x} = \cos x - \sin x \)

96%

114 rated

Answer

To prove the identity, we can use the double angle formula for cosine:

[ \cos 2x = \cos^2 x - \sin^2 x ]

Consequently, substituting this into our left-hand side:

[ \frac{\cos^2 x - \sin^2 x}{\cos x + \sin x} ]

Next, we multiply both numerator and denominator by ( \cos x - \sin x ):

[ = \frac{(\cos^2 x - \sin^2 x)(\cos x - \sin x)}{(\cos x + \sin x)(\cos x - \sin x)} ]

On simplifying the right-hand side, we confirm:

[ = \cos x - \sin x ]

Step 2

(ii) \( \frac{1}{2} (\cos 2x - \sin 2x) = \cos^2 x - \cos x \sin x - \frac{1}{2} \)

99%

104 rated

Answer

For the second part, we begin again with the identities:

[ \cos 2x = \cos^2 x - \sin^2 x \quad \text{and} \quad \sin 2x = 2 \sin x \cos x ]

Substituting into the left-hand side gives:

[ \frac{1}{2} \left( \cos^2 x - \sin^2 x - 2 \sin x \cos x \right) ]

This can be further simplified to:

[ = \frac{1}{2} \left( (\cos^2 x - \sin^2 x) - 2 \sin x \cos x \right) = rac{1}{2} \left( \cos^2 x - 2 \sin x \cos x - \sin^2 x \right) ]

Final simplification yields:

[ = \cos^2 x - \sin^2 x - \frac{1}{2} ]

Step 3

(b) \( \cos \left( \frac{\cos 2\theta}{\cos \theta + \sin \theta} \right) = \frac{1}{2} \)

96%

101 rated

Answer

Given the equation, we realize that:

[ \frac{\cos 2\theta}{\cos \theta + \sin \theta} = \frac{1}{2} \implies \sin 2\theta = \cos 2\theta ]

We can represent this as:

[ 2\theta = \frac{\pi}{4} + n\pi, \quad n \in \mathbb{Z} ]

Step 4

(c) \( \sin 2\theta = \cos 2\theta \)

98%

120 rated

Answer

To solve the equation:

[ \tan 2\theta = 1 ]

This implies:

[ 2\theta = \frac{\pi}{4} + n\pi ]

Dividing by 2 gives:

[ \ heta = \frac{\pi}{8} + \frac{n\pi}{2} ]

For the range ( 0 < \theta < 2\pi ), the solutions are obtained by substituting integer values for ( n ):

  1. If ( n = 0 ): ( \theta = \frac{\pi}{8} )
  2. If ( n = 1 ): ( \theta = \frac{5\pi}{8} )
  3. If ( n = 2 ): ( \theta = \frac{9\pi}{8} )
  4. If ( n = 3 ): ( \theta = \frac{13\pi}{8} )

Thus, we conclude the valid solutions to be:

[ \theta = \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8} ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;