Photo AI

12. (a) Solve, for -180° < x < 180°, the equation 3 sin²x + sinx + 8 = 9 cos²x giving your answers to 2 decimal places - Edexcel - A-Level Maths Pure - Question 13 - 2017 - Paper 2

Question icon

Question 13

12.-(a)-Solve,-for--180°-<-x-<-180°,-the-equation--3-sin²x-+-sinx-+-8-=-9-cos²x--giving-your-answers-to-2-decimal-places-Edexcel-A-Level Maths Pure-Question 13-2017-Paper 2.png

12. (a) Solve, for -180° < x < 180°, the equation 3 sin²x + sinx + 8 = 9 cos²x giving your answers to 2 decimal places. (b) Hence find the smallest positive solut... show full transcript

Worked Solution & Example Answer:12. (a) Solve, for -180° < x < 180°, the equation 3 sin²x + sinx + 8 = 9 cos²x giving your answers to 2 decimal places - Edexcel - A-Level Maths Pure - Question 13 - 2017 - Paper 2

Step 1

Solve, for -180° < x < 180°, the equation

96%

114 rated

Answer

To solve the equation, start by using the identity for cosine: extcos2x=1extsin2x. ext{cos}^2 x = 1 - ext{sin}^2 x. Substituting this into the equation gives:

3extsin2x+extsinx+8=9(1extsin2x)3 ext{sin}^2 x + ext{sin} x + 8 = 9(1 - ext{sin}^2 x)

which simplifies to:

3extsin2x+extsinx+8=99extsin2x.3 ext{sin}^2 x + ext{sin} x + 8 = 9 - 9 ext{sin}^2 x.

Rearranging the terms, we combine like terms:

12extsin2x+extsinx1=0.12 ext{sin}^2 x + ext{sin} x - 1 = 0.

This is a quadratic equation in terms of ( ext{sin} x). Using the quadratic formula:

extsinx=b±b24ac2a ext{sin} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where (a = 12), (b = 1), and (c = -1):

extsinx=1±124121212 ext{sin} x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 12 \cdot -1}}{2 \cdot 12}

Calculating the discriminant:

=1±1+4824=1±4924= \frac{-1 \pm \sqrt{1 + 48}}{24}= \frac{-1 \pm \sqrt{49}}{24}

This simplifies to:

=1±724,= \frac{-1 \pm 7}{24},

yielding two solutions:

  1. (\text{sin} x = \frac{6}{24} = \frac{1}{4} \Rightarrow x = 14.48°)
  2. (\text{sin} x = \frac{-8}{24} = -\frac{1}{3} \Rightarrow x = 165.52°, -19.47°, -160.53°.$$

Thus, the answers to two decimal places are:

  1. (14.48°)
  2. (165.52°)

Step 2

Hence find the smallest positive solution of the equation

99%

104 rated

Answer

For the equation

3sin(20°30°)+sin(20°30°)+8=9cos(20°30°)3\text{sin}(20° - 30°) + \text{sin}(20° - 30°) + 8 = 9\text{cos}(20° - 30°),

set 2°30°=19.47°.2° - 30° = -19.47°. This means:

2°=19.47°+30°=49.47°.2° = 19.47° + 30° = 49.47°. Thus, the smallest positive solution of this equation is:

2°=5.26°.2° = 5.26°.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;