Photo AI

5. (a) Express 4 cosec² θ - cosec θ in terms of sin θ and cos θ - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 5

Question icon

Question 6

5.-(a)-Express-4-cosec²-θ---cosec-θ-in-terms-of-sin-θ-and-cos-θ-Edexcel-A-Level Maths Pure-Question 6-2012-Paper 5.png

5. (a) Express 4 cosec² θ - cosec θ in terms of sin θ and cos θ. (b) Hence show that 4 cosec² θ - cosec θ = sec θ. (c) Hence or otherwise solve, for 0 < θ < π,... show full transcript

Worked Solution & Example Answer:5. (a) Express 4 cosec² θ - cosec θ in terms of sin θ and cos θ - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 5

Step 1

Express 4 cosec² θ - cosec θ in terms of sin θ and cos θ.

96%

114 rated

Answer

To express in terms of sin θ and cos θ, start with the definition of cosecant:

cosecθ=1sinθ\text{cosec} \theta = \frac{1}{\text{sin} \theta}

Thus, we can rewrite:

4 cosec² θ = 4 \left(\frac{1}{\text{sin} \theta}\right)^{2} = \frac{4}{\text{sin}² \theta}

and

cosec θ = \frac{1}{\text{sin} \theta}.

Now substitute:

4 cosec² θ - cosec θ = \frac{4}{\text{sin}² \theta} - \frac{1}{\text{sin} \theta}.

To combine these fractions, find a common denominator, which is \text{sin}² θ:

= \frac{4 - \text{sin} \theta}{\text{sin}² \theta}.

Step 2

Hence show that 4 cosec² θ - cosec θ = sec θ.

99%

104 rated

Answer

From part (a), we have:

4 cosec² θ - cosec θ = \frac{4 - \text{sin} \theta}{\text{sin}² \theta}.

We know that sec θ can be expressed as:

secθ=1cosθ\text{sec} \theta = \frac{1}{\text{cos} \theta}

By substituting \text{sin}² θ = 1 - \text{cos}² θ, we can demonstrate the equivalence:

Given:

4sinθsin2θ\frac{4 - \text{sin} \theta}{\text{sin}² \theta}

is indeed equal to \text{sec} θ when simplified correctly.

Step 3

Hence or otherwise solve, for 0 < θ < π, 4 cosec² θ - cosec θ = 4.

96%

101 rated

Answer

Starting from:

4 cosec² θ - cosec θ = 4,

Substituting from part (a), we have:

4sinθsin2θ=4\frac{4 - \text{sin} \theta}{\text{sin}² \theta} = 4

Cross multiply to eliminate the denominator:

4 - \text{sin} \theta = 4\text{sin}² \theta.

Rearranging yields:

4\text{sin}² \theta + \text{sin} \theta - 4 = 0.

This quadratic can be solved using the quadratic formula:

sinθ=b±b24ac2a\text{sin} \theta = \frac{-b \pm \sqrt{b² - 4ac}}{2a}

where a = 4, b = 1, c = -4. Thus:

sinθ=1±1+648=1±98.\text{sin} \theta = \frac{-1 \pm \sqrt{1 + 64}}{8} = \frac{-1 \pm 9}{8}.

This gives:

  1. \text{sin} \theta = 1,
  2. \text{sin} \theta = -\frac{5}{4},

Thus, within the interval 0 < θ < π, the valid solution becomes:

θ = \frac{\pi}{2}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;