Photo AI

1. Find the binomial series expansion of $$ \sqrt{4 - 9x}, \, |x| < \frac{4}{9} $$ in ascending powers of $x$, up to and including the term in $x^2$ - Edexcel - A-Level Maths Pure - Question 2 - 2018 - Paper 9

Question icon

Question 2

1.-Find-the-binomial-series-expansion-of--$$-\sqrt{4---9x},-\,-|x|-<-\frac{4}{9}-$$-in-ascending-powers-of-$x$,-up-to-and-including-the-term-in-$x^2$-Edexcel-A-Level Maths Pure-Question 2-2018-Paper 9.png

1. Find the binomial series expansion of $$ \sqrt{4 - 9x}, \, |x| < \frac{4}{9} $$ in ascending powers of $x$, up to and including the term in $x^2$. Give each coef... show full transcript

Worked Solution & Example Answer:1. Find the binomial series expansion of $$ \sqrt{4 - 9x}, \, |x| < \frac{4}{9} $$ in ascending powers of $x$, up to and including the term in $x^2$ - Edexcel - A-Level Maths Pure - Question 2 - 2018 - Paper 9

Step 1

Find the binomial series expansion of $$\sqrt{4 - 9x}, \, |x| < \frac{4}{9}$$

96%

114 rated

Answer

To find the binomial series expansion, we can rewrite the expression as:

49x=(4(194x))1/2=2(194x)1/2\sqrt{4 - 9x} = (4(1 - \frac{9}{4}x))^{1/2} = 2(1 - \frac{9}{4}x)^{1/2}

Now we can apply the binomial series expansion, which is given by:

(1+u)n1+nu+n(n1)2!u2+(1 + u)^n \approx 1 + nu + \frac{n(n-1)}{2!}u^2 + \ldots

In this case, n=12n = \frac{1}{2} and u=94xu = -\frac{9}{4}x:

  1. First term: 11

  2. Second term: 12(94x)=98x\frac{1}{2} \left(-\frac{9}{4}x\right) = -\frac{9}{8}x

  3. Third term: 12(121)2!(94x)2=12(12)2(8116x2)=8164x2\frac{\frac{1}{2}(\frac{1}{2} - 1)}{2!}\left(-\frac{9}{4}x\right)^2 = \frac{\frac{1}{2}(-\frac{1}{2})}{2}\left(\frac{81}{16}x^2\right) = -\frac{81}{64}x^2

Putting it all together:

49x=2(198x8164x2+)=294x8132x2+\sqrt{4 - 9x} = 2 \left(1 - \frac{9}{8}x - \frac{81}{64}x^2 + \ldots\right) = 2 - \frac{9}{4}x - \frac{81}{32}x^2 + \ldots

Thus, the expansion up to the term in x2x^2 is: 294x8132x22 - \frac{9}{4}x - \frac{81}{32}x^2.

Step 2

Use the expansion from part (a), with a suitable value of $x$, to find an approximate value for $\sqrt{ \frac{3}{10} }$.

99%

104 rated

Answer

We want to approximate 310\sqrt{\frac{3}{10}}. We can express 310\frac{3}{10} in a suitable form:

310=34410=3425\frac{3}{10} = \frac{3}{4} \cdot \frac{4}{10} = \frac{3}{4} \cdot \frac{2}{5}

Now to use the expansion from part (a), we let:

49x=3104 - 9x = \frac{3}{10}

This requires setting xx such that:

49x=310    9x=4310=4010310=3710    x=37904 - 9x = \frac{3}{10} \implies 9x = 4 - \frac{3}{10} = \frac{40}{10} - \frac{3}{10} = \frac{37}{10} \implies x = \frac{37}{90}

Now substituting this value into our expansion, we have:

310294(3790)8132(3790)2\sqrt{\frac{3}{10}} \approx 2 - \frac{9}{4}\left(\frac{37}{90}\right) - \frac{81}{32}\left(\frac{37}{90}\right)^2

Calculating each term:

  1. First term: 2=22 = 2
  2. Second term: 937490=3333600.925 -\frac{9 \cdot 37}{4 \cdot 90} = -\frac{333}{360} \approx -0.925
  3. Third term:

8113693281000.195 -\frac{81 \cdot 1369}{32 \cdot 8100} \approx -0.195

Adding these results together gives:

31020.9250.195=0.880\sqrt{\frac{3}{10}} \approx 2 - 0.925 - 0.195 = 0.880

Rounding to three decimal places, we find:

3100.880\sqrt{\frac{3}{10}} \approx 0.880.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;