First, we compute g(g(x)). Start by finding g(x):
g(x)=3−4x
Now substitute g(x) into itself:
g(g(x))=g(3−4x)=3−4(3−4x)=3−12+16x=16x−9
Now substituting into the equation gives:
gg(x)+[g(x)]2=0
16x−9+(3−4x)2=0
Expanding (3−4x)2:
(3−4x)2=9−24x+16x2
Putting it back into the equation:
16x−9+9−24x+16x2=0
16x2−8x=0
8x(2x−1)=0
Thus, the solutions are:
x = 0 ext{ or } x = rac{1}{2}