Photo AI

2. (a) Use integration by parts to find \( \int xe^{x} \, dx \) - Edexcel - A-Level Maths Pure - Question 4 - 2008 - Paper 7

Question icon

Question 4

2.-(a)-Use-integration-by-parts-to-find-\(-\int-xe^{x}-\,-dx-\)-Edexcel-A-Level Maths Pure-Question 4-2008-Paper 7.png

2. (a) Use integration by parts to find \( \int xe^{x} \, dx \). (b) Hence find \( \int x e^{2x} \, dx \).

Worked Solution & Example Answer:2. (a) Use integration by parts to find \( \int xe^{x} \, dx \) - Edexcel - A-Level Maths Pure - Question 4 - 2008 - Paper 7

Step 1

Use integration by parts to find \( \int xe^{x} \, dx \)

96%

114 rated

Answer

We start by applying the integration by parts formula, which is:

udv=uvvdu\int u \, dv = uv - \int v \, du

  1. Assign:

    • Let ( u = x ) and ( dv = e^{x} , dx )
    • This gives us ( du = dx ) and ( v = e^{x} )
  2. Apply the formula: xexdx=xexexdx\int xe^{x} \, dx = xe^{x} - \int e^{x} \, dx

  3. Calculate the integral of ( e^{x} ): exdx=ex\int e^{x} \, dx = e^{x}

  4. Therefore, substituting back: xexdx=xexex+c\int xe^{x} \, dx = xe^{x} - e^{x} + c

  5. This simplifies to: xexdx=ex(x1)+c\int xe^{x} \, dx = e^{x} (x - 1) + c

Step 2

Hence find \( \int x e^{2x} \, dx \)

99%

104 rated

Answer

Now, we use the result from part (a) to find the integral ( \int x e^{2x} , dx ). Again we apply integration by parts:

  1. Assign:

    • Let ( u = x ) and ( dv = e^{2x} , dx )
    • So, ( du = dx ) and ( v = \frac{1}{2} e^{2x} )
  2. Apply the formula: xe2xdx=x12e2x12e2xdx\int xe^{2x} \, dx = x \cdot \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} \, dx

  3. Calculate the integral of ( e^{2x} ): e2xdx=12e2x\int e^{2x} \, dx = \frac{1}{2} e^{2x}

  4. Substituting back: xe2xdx=12xe2x1212e2x+c\int xe^{2x} \, dx = \frac{1}{2} x e^{2x} - \frac{1}{2} \cdot \frac{1}{2} e^{2x} + c

  5. Thus we have: xe2xdx=12xe2x14e2x+c\int xe^{2x} \, dx = \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} + c

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;