Photo AI

8. (a) By writing sec θ = \frac{1}{cos θ}, show that \frac{d}{dθ}(sec θ) = sec θ tan θ (b) Given that \( x = e^{sec y} \), \( x > e, \; 0 < y < \frac{π}{2} \) show that \( \frac{dy}{dx} = \frac{1}{x g(x)} \), \; \( x > e \) where g(x) is a function of ln x. - Edexcel - A-Level Maths Pure - Question 8 - 2018 - Paper 5

Question icon

Question 8

8.-(a)-By-writing-sec-θ-=-\frac{1}{cos-θ},-show-that-\frac{d}{dθ}(sec-θ)-=-sec-θ-tan-θ---(b)-Given-that-\(-x-=-e^{sec-y}-\),-\(-x->-e,-\;-0-<-y-<-\frac{π}{2}-\)--show-that-\(-\frac{dy}{dx}-=-\frac{1}{x-g(x)}-\),-\;-\(-x->-e-\)--where-g(x)-is-a-function-of-ln-x.-Edexcel-A-Level Maths Pure-Question 8-2018-Paper 5.png

8. (a) By writing sec θ = \frac{1}{cos θ}, show that \frac{d}{dθ}(sec θ) = sec θ tan θ (b) Given that \( x = e^{sec y} \), \( x > e, \; 0 < y < \frac{π}{2} \) sho... show full transcript

Worked Solution & Example Answer:8. (a) By writing sec θ = \frac{1}{cos θ}, show that \frac{d}{dθ}(sec θ) = sec θ tan θ (b) Given that \( x = e^{sec y} \), \( x > e, \; 0 < y < \frac{π}{2} \) show that \( \frac{dy}{dx} = \frac{1}{x g(x)} \), \; \( x > e \) where g(x) is a function of ln x. - Edexcel - A-Level Maths Pure - Question 8 - 2018 - Paper 5

Step 1

By writing sec θ = \frac{1}{cos θ}, show that \frac{d}{dθ}(sec θ) = sec θ tan θ

96%

114 rated

Answer

To find ( \frac{d}{dθ}(sec θ) ), we can express sec θ as ( \frac{1}{cos θ} ).

Utilizing the chain rule:

ddθ(secθ)=ddθ(1cosθ)=1(cosθ)2ddθ(cosθ)\frac{d}{dθ}(sec θ) = \frac{d}{dθ}\left(\frac{1}{cos θ}\right) = -\frac{1}{(cos θ)^2} \cdot \frac{d}{dθ}(cos θ)

We know ( \frac{d}{dθ}(cos θ) = -sin θ ), so:

=1(cosθ)2(sinθ)=sinθ(cosθ)2=secθtanθ = -\frac{1}{(cos θ)^2} \cdot (-sin θ) = \frac{sin θ}{(cos θ)^2} = sec θ \cdot tan θ

Thus, we have shown that ( \frac{d}{dθ}(sec θ) = sec θ tan θ ).

Step 2

Given that \( x = e^{sec y} \), \; x > e, \; 0 < y < \frac{π}{2} \) show that \( \frac{dy}{dx} = \frac{1}{x g(x)} \), \; \( x > e \)

99%

104 rated

Answer

Starting from the equation ( x = e^{sec y} ), we differentiate both sides with respect to x:

( \frac{dx}{dy} = e^{sec y} sec y tan y )

Now we rearrange for ( \frac{dy}{dx} ):

dydx=1dxdy=1esecysecytany\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{e^{sec y} sec y tan y}

Next, we rewrite ( e^{sec y} ) in terms of x:

=1xsecytany= \frac{1}{x sec y tan y}

Recognizing that the function g(x) relates to ln x, we can establish that:

g(x)=secy=elnx=xg(x) = sec y = e^{\ln x} = x

Thus, we have confirmed ( \frac{dy}{dx} = \frac{1}{x g(x)} ), where g(x) is a function of ln x.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;