Photo AI

Figure 2 shows a sketch of a triangle ABC - Edexcel - A-Level Maths Pure - Question 8 - 2017 - Paper 1

Question icon

Question 8

Figure-2-shows-a-sketch-of-a-triangle-ABC-Edexcel-A-Level Maths Pure-Question 8-2017-Paper 1.png

Figure 2 shows a sketch of a triangle ABC. Given $oldsymbol{AB = 2i + 3j + k}$ and $oldsymbol{BC = i - 9j + 3k}$, show that $oldsymbol{\angle BAC = 105.9^\circ}$... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of a triangle ABC - Edexcel - A-Level Maths Pure - Question 8 - 2017 - Paper 1

Step 1

Find AC using the formula AC = AB + BC

96%

114 rated

Answer

To find the vector oldsymbol{AC}, we can use the equation:

oldsymbol{AC = AB + BC}

Given that:

  • AB=2i+3j+k\boldsymbol{AB = 2i + 3j + k}
  • BC=i9j+3k\boldsymbol{BC = i - 9j + 3k},

We have: oldsymbol{AC = (2i + 3j + k) + (i - 9j + 3k)}

So, oldsymbol{AC = (2 + 1)i + (3 - 9)j + (1 + 3)k = 3i - 6j + 4k}

Step 2

Find the lengths |AB|, |AC|, and |BC|

99%

104 rated

Answer

Now, we calculate the lengths of the sides:

  1. Length of AB\boldsymbol{|AB|}: AB=(22+32+12)=4+9+1=14|AB| = \sqrt{(2^2 + 3^2 + 1^2)} = \sqrt{4 + 9 + 1} = \sqrt{14}

  2. Length of AC\boldsymbol{|AC|}: AC=(32+(6)2+42)=9+36+16=61|AC| = \sqrt{(3^2 + (-6)^2 + 4^2)} = \sqrt{9 + 36 + 16} = \sqrt{61}

  3. Length of BC\boldsymbol{|BC|}: BC=(12+(9)2+32)=1+81+9=91|BC| = \sqrt{(1^2 + (-9)^2 + 3^2)} = \sqrt{1 + 81 + 9} = \sqrt{91}

Step 3

Calculate cos(BAC) using the cosine rule

96%

101 rated

Answer

Using the cosine rule:

cos(BAC)=AB2+AC2BC22ABAC\cos(\angle BAC) = \frac{|AB|^2 + |AC|^2 - |BC|^2}{2 |AB| |AC|}

Substituting the lengths:

  • AB2=14|AB|^2 = 14
  • AC2=61|AC|^2 = 61
  • BC2=91|BC|^2 = 91

We have: cos(BAC)=14+619121461=1621461=81461\cos(\angle BAC) = \frac{14 + 61 - 91}{2 \sqrt{14} \sqrt{61}} = \frac{-16}{2 \sqrt{14} \sqrt{61}} = \frac{-8}{\sqrt{14} \sqrt{61}}

Step 4

Find the angle BAC

98%

120 rated

Answer

Now we can calculate BAC\angle BAC:

Thus, BAC=cos1(81461)\angle BAC = \cos^{-1}\left(\frac{-8}{\sqrt{14} \sqrt{61}}\right)

Upon calculation, this yields: BAC105.9\angle BAC \approx 105.9^\circ

This confirms that the angle BAC\angle BAC is indeed 105.9105.9^\circ to one decimal place.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;