Photo AI

Given the function: $$f(x) = \frac{1}{\sqrt{9 + 4x^2}}, \quad |x| < \frac{3}{2}$$ Find the first three non-zero terms of the binomial expansion of $f(x)$ in ascending powers of $x$ - Edexcel - A-Level Maths Pure - Question 4 - 2011 - Paper 5

Question icon

Question 4

Given-the-function:---$$f(x)-=-\frac{1}{\sqrt{9-+-4x^2}},-\quad-|x|-<-\frac{3}{2}$$--Find-the-first-three-non-zero-terms-of-the-binomial-expansion-of-$f(x)$-in-ascending-powers-of-$x$-Edexcel-A-Level Maths Pure-Question 4-2011-Paper 5.png

Given the function: $$f(x) = \frac{1}{\sqrt{9 + 4x^2}}, \quad |x| < \frac{3}{2}$$ Find the first three non-zero terms of the binomial expansion of $f(x)$ in ascen... show full transcript

Worked Solution & Example Answer:Given the function: $$f(x) = \frac{1}{\sqrt{9 + 4x^2}}, \quad |x| < \frac{3}{2}$$ Find the first three non-zero terms of the binomial expansion of $f(x)$ in ascending powers of $x$ - Edexcel - A-Level Maths Pure - Question 4 - 2011 - Paper 5

Step 1

Step 1: Rewrite the Function

96%

114 rated

Answer

Start by rewriting f(x)f(x) in a form suitable for the binomial expansion:

f(x)=(9+4x2)12=912(1+4x29)12f(x) = (9 + 4x^2)^{-\frac{1}{2}} = 9^{-\frac{1}{2}}(1 + \frac{4x^2}{9})^{-\frac{1}{2}}

This simplifies to:

f(x)=13(1+49x2)12f(x) = \frac{1}{3}(1 + \frac{4}{9}x^2)^{-\frac{1}{2}}

Step 2

Step 2: Apply the Binomial Expansion

99%

104 rated

Answer

Using the binomial expansion for (1+k)n(1 + k)^n where n=12n = -\frac{1}{2} and k=49x2k = \frac{4}{9}x^2, we have:

(1+k)n=1+nk+n(n1)2k2+(1 + k)^n = 1 + nk + \frac{n(n - 1)}{2}k^2 + \cdots

For our case:

  • The first term is 11.
  • The second term is nk=1249x2=29x2n \cdot k = -\frac{1}{2} \cdot \frac{4}{9}x^2 = -\frac{2}{9}x^2
  • The third term is n(n1)2k2=12(32)2(49x2)2=321681x4=24162x4=427x4\frac{n(n - 1)}{2} \cdot k^2 = \frac{-\frac{1}{2}(-\frac{3}{2})}{2} \cdot \left(\frac{4}{9} x^2\right)^2 = \frac{3}{2} \cdot \frac{16}{81} x^4 = \frac{24}{162} x^4 = \frac{4}{27} x^4

Step 3

Step 3: Combine the Results

96%

101 rated

Answer

Now we can summarize the first three non-zero terms:

f(x)=13(129x2+427x4+)f(x) = \frac{1}{3} \left(1 - \frac{2}{9}x^2 + \frac{4}{27}x^4 + \cdots\right)

Therefore, the first three non-zero terms are:

  • The coefficient of x0x^0 is rac{1}{3}
  • The coefficient of x2x^2 is 227-\frac{2}{27}
  • The coefficient of x4x^4 is rac{4}{81}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;