Photo AI

2. (a) Use the binomial theorem to expand $(8-3x)^{\frac{1}{2}}$, $|x| < \frac{3}{8}$, in ascending powers of $x$, up to and including the term in $x^{3}$, giving each term as a simplified fraction - Edexcel - A-Level Maths Pure - Question 4 - 2008 - Paper 8

Question icon

Question 4

2.-(a)-Use-the-binomial-theorem-to-expand------$(8-3x)^{\frac{1}{2}}$,-------$|x|-<-\frac{3}{8}$,-----in-ascending-powers-of-$x$,-up-to-and-including-the-term-in-$x^{3}$,-giving-each-term-as-a-simplified-fraction-Edexcel-A-Level Maths Pure-Question 4-2008-Paper 8.png

2. (a) Use the binomial theorem to expand $(8-3x)^{\frac{1}{2}}$, $|x| < \frac{3}{8}$, in ascending powers of $x$, up to and including the term in $x^... show full transcript

Worked Solution & Example Answer:2. (a) Use the binomial theorem to expand $(8-3x)^{\frac{1}{2}}$, $|x| < \frac{3}{8}$, in ascending powers of $x$, up to and including the term in $x^{3}$, giving each term as a simplified fraction - Edexcel - A-Level Maths Pure - Question 4 - 2008 - Paper 8

Step 1

Use the binomial theorem to expand $(8-3x)^{\frac{1}{2}}$

96%

114 rated

Answer

To expand (83x)12(8-3x)^{\frac{1}{2}}, we first factor out the 88:

(8(13x8))12=22(13x8)12(8(1 - \frac{3x}{8}))^{\frac{1}{2}} = 2\sqrt{2}(1 - \frac{3x}{8})^{\frac{1}{2}}

Next, we apply the binomial expansion formula for (1+u)n(1 + u)^{n}:

(1+u)n=1+nu+n(n1)2!u2+n(n1)(n2)3!u3+(1 + u)^{n} = 1 + nu + \frac{n(n-1)}{2!}u^{2} + \frac{n(n-1)(n-2)}{3!}u^{3} + \cdots

In our case, n=12n = \frac{1}{2} and u=3x8u = -\frac{3x}{8}. Thus, the terms become:

  1. Zero term:
    11
  2. First term: 316x-\frac{3}{16}x
  3. Second term:
    (12)(38)2x2=9128x2\frac{(\frac{1}{2})(-\frac{3}{8})}{2} x^{2} = -\frac{9}{128}x^{2}
  4. Third term:
    (12)(12)(38)26x3=273072x3\frac{(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{8})^{2}}{6} x^{3 = \frac{27}{3072}x^{3}}

Combining these, the expansion up to x3x^{3} is:

22(1316x9128x2+273072x3)2\sqrt{2}\left( 1 - \frac{3}{16}x - \frac{9}{128}x^{2} + \frac{27}{3072}x^{3} \right)

Thus, the final result is:

22328x9264x2+2721536x32\sqrt{2} - \frac{3\sqrt{2}}{8}x - \frac{9\sqrt{2}}{64}x^{2} + \frac{27\sqrt{2}}{1536}x^{3}

Step 2

Use your expansion, with a suitable value of $x$, to obtain an approximation to $\\sqrt{(7.7)}$

99%

104 rated

Answer

Select an appropriate value for xx that satisfies x<38|x| < \frac{3}{8}. A reasonable choice is:

x=0.1.x = 0.1.

Next, substitute x=0.1x = 0.1 into the expansion:

sqrt(7.7)22328(0.1)9264(0.1)2+2721536(0.1)3\\sqrt{(7.7)} \approx 2\sqrt{2} - \frac{3\sqrt{2}}{8}(0.1) - \frac{9\sqrt{2}}{64}(0.1)^{2} + \frac{27\sqrt{2}}{1536}(0.1)^{3}

Now calculate each term:

  1. First term: 222×1.4142136=2.82842712\sqrt{2} \approx 2 \times 1.4142136 = 2.8284271
  2. Second term: 328(0.1)=3(1.4142136)8(0.1)0.053033-\frac{3\sqrt{2}}{8}(0.1) = -\frac{3(1.4142136)}{8}(0.1) \approx -0.053033
  3. Third term: 9264(0.01)=9(1.4142136)64(0.01)0.00200098-\frac{9\sqrt{2}}{64}(0.01) = -\frac{9(1.4142136)}{64}(0.01) \approx -0.00200098
  4. Fourth term: 2721536(0.001)=27(1.4142136)1536(0.001)0.0000246085\frac{27\sqrt{2}}{1536}(0.001) = \frac{27(1.4142136)}{1536}(0.001) \approx 0.0000246085

Now, summing these values:

2.82842710.0530330.00200098+0.00002460852.773417732.8284271 - 0.053033 - 0.00200098 + 0.0000246085 \approx 2.77341773

Thus, the approximation for sqrt(7.7)\\sqrt{(7.7)} is approximately:

1.97468091.9746809

Rounded to 7 decimal places, the final result is:

1.97468091.9746809

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;