Photo AI

Figure 2 shows a sketch of part of the curve with equation y = 4x³ + 9x² - 30x - 8, -0.5 ≤ x ≤ 2.2 The curve has a turning point at the point A - Edexcel - A-Level Maths Pure - Question 1 - 2016 - Paper 3

Question icon

Question 1

Figure-2-shows-a-sketch-of-part-of-the-curve-with-equation--y-=-4x³-+-9x²---30x---8,---0.5-≤-x-≤-2.2--The-curve-has-a-turning-point-at-the-point-A-Edexcel-A-Level Maths Pure-Question 1-2016-Paper 3.png

Figure 2 shows a sketch of part of the curve with equation y = 4x³ + 9x² - 30x - 8, -0.5 ≤ x ≤ 2.2 The curve has a turning point at the point A. (a) Using calcul... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of part of the curve with equation y = 4x³ + 9x² - 30x - 8, -0.5 ≤ x ≤ 2.2 The curve has a turning point at the point A - Edexcel - A-Level Maths Pure - Question 1 - 2016 - Paper 3

Step 1

Using calculus, show that the x coordinate of A is 1.

96%

114 rated

Answer

To find the turning point of the curve, we first need to differentiate the equation:

dydx=12x2+18x30\frac{dy}{dx} = 12x^2 + 18x - 30

Next, we set the derivative equal to zero to find the critical points:

12x2+18x30=012x^2 + 18x - 30 = 0

Using the quadratic formula where ( a = 12 ), ( b = 18 ), ( c = -30 ):

x=b±b24ac2a=18±(18)24(12)(30)2(12)x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-18 \pm \sqrt{(18)^2 - 4(12)(-30)}}{2(12)}

Calculating within the square root:

=18±324+144024=18±176424=18±4224= \frac{-18 \pm \sqrt{324 + 1440}}{24} = \frac{-18 \pm \sqrt{1764}}{24} = \frac{-18 \pm 42}{24}

Thus, we have:

  1. ( x = \frac{24}{24} = 1 )
  2. ( x = \frac{-60}{24} = -2.5 ) (not in range)

So, the x coordinate of A is indeed ( x = 1 ).

Step 2

Use integration to find the finite region R, giving your answer to 2 decimal places.

99%

104 rated

Answer

To calculate the area of the region R, we need to find the area between the curve and the x-axis from the point B(2, 0) to point C(-\frac{1}{4}, 0).

The area A can be found using the integral:

A=142(4x3+9x230x8)dxA = \int_{-\frac{1}{4}}^{2} (4x^3 + 9x^2 - 30x - 8) \, dx

Calculating the definite integral:

  1. Find the antiderivative:

(4x3+9x230x8)dx=x4+3x315x28x+C\int (4x^3 + 9x^2 - 30x - 8) \, dx = x^4 + 3x^3 - 15x^2 - 8x + C

  1. Evaluate from -\frac{1}{4} to 2:

A=[x4+3x315x28x]142A = \left[ x^4 + 3x^3 - 15x^2 - 8x \right]_{-\frac{1}{4}}^{2}

Calculating at the upper limit (x = 2):

=24+3(2)315(2)28(2)=16+246016=36= 2^4 + 3(2)^3 - 15(2)^2 - 8(2) = 16 + 24 - 60 - 16 = -36

Calculating at the lower limit (x = -\frac{1}{4}):

=(14)4+3(14)315(14)28(14)= \left(-\frac{1}{4}\right)^4 + 3\left(-\frac{1}{4}\right)^3 - 15\left(-\frac{1}{4}\right)^2 - 8\left(-\frac{1}{4}\right)

Calculating each term:

  1. (= \frac{1}{256} )
  2. (= -\frac{3}{64} )
  3. (= -\frac{15}{16} = -\frac{240}{256} )
  4. (= 2 )

So this becomes:

=1256364240256+2=112240+512256=261256= \frac{1}{256} - \frac{3}{64} - \frac{240}{256} + 2 = \frac{1 - 12 - 240 + 512}{256} = \frac{261}{256}

Therefore, the area A is:

A=36(261256)=36+261256=9216+261256=8955256A = -36 - \left(\frac{261}{256}\right) = -36 + \frac{261}{256} = \frac{-9216 + 261}{256} = \frac{-8955}{256}

To two decimal places, approximately:

A32.52A \approx 32.52

Hence, the area of the finite region R is (32.52).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;