Photo AI

The line $l_1$ has equation $$ r = \begin{pmatrix} 2 \\\ 3 \\\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\\ 2 \\\ 1 \end{pmatrix},$$ where $\lambda$ is a scalar parameter - Edexcel - A-Level Maths Pure - Question 1 - 2010 - Paper 6

Question icon

Question 1

The-line-$l_1$-has-equation-$$-r-=-\begin{pmatrix}-2-\\\-3-\\\--4-\end{pmatrix}-+-\lambda-\begin{pmatrix}-1-\\\-2-\\\-1-\end{pmatrix},$$-where-$\lambda$-is-a-scalar-parameter-Edexcel-A-Level Maths Pure-Question 1-2010-Paper 6.png

The line $l_1$ has equation $$ r = \begin{pmatrix} 2 \\\ 3 \\\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\\ 2 \\\ 1 \end{pmatrix},$$ where $\lambda$ is a scalar ... show full transcript

Worked Solution & Example Answer:The line $l_1$ has equation $$ r = \begin{pmatrix} 2 \\\ 3 \\\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\\ 2 \\\ 1 \end{pmatrix},$$ where $\lambda$ is a scalar parameter - Edexcel - A-Level Maths Pure - Question 1 - 2010 - Paper 6

Step 1

a) the coordinates of C.

96%

114 rated

Answer

To find the coordinates of the point CC, we need to set the two equations for l1l_1 and l2l_2 equal to each other:

From l1l_1: r1=(2 +λ1 3 +λ2 4 +λ1)=(2+λ 3+2λ 4+λ) r_1 = \begin{pmatrix} 2 \ + \lambda \cdot 1 \\\ 3 \ + \lambda \cdot 2 \\\ -4 \ + \lambda \cdot 1 \end{pmatrix} = \begin{pmatrix} 2 + \lambda \\\ 3 + 2\lambda \\\ -4 + \lambda \end{pmatrix}

From l2l_2: r2=(0 +μ5 9 +μ0 0 +μ2)=(5μ 9 2μ) r_2 = \begin{pmatrix} 0 \ + \mu \cdot 5 \\\ 9 \ + \mu \cdot 0 \\\ 0 \ + \mu \cdot 2 \end{pmatrix} = \begin{pmatrix} 5\mu \\\ 9 \\\ 2\mu \end{pmatrix}

Setting the corresponding components equal to each other:

  1. 2+λ=5μ2 + \lambda = 5\mu
  2. 3+2λ=93 + 2\lambda = 9
  3. 4+λ=2μ-4 + \lambda = 2\mu

From the second equation, we can solve for \lambda: 3+2λ=92λ=6λ=33 + 2\lambda = 9 \Rightarrow 2\lambda = 6 \Rightarrow \lambda = 3 Substituting \lambda back into the first equation: 2+3=5μ5=5μμ=12 + 3 = 5\mu \Rightarrow 5 = 5\mu \Rightarrow \mu = 1

Now using \lambda = 3 in one of the equations to find the coordinates of CC:

Using \lambda = 3 in l1l_1: C=(2+3 3+23 4+3)=(5 9 1)C = \begin{pmatrix} 2 + 3 \\\ 3 + 2 \cdot 3 \\\ -4 + 3 \end{pmatrix} = \begin{pmatrix} 5 \\\ 9 \\\ -1 \end{pmatrix}

Thus, the coordinates of point CC are (5,9,1)(5, 9, -1).

Step 2

b) Find the size of the angle ACB.

99%

104 rated

Answer

To find the angle ACBACB, we first need the direction vectors AC\overrightarrow{AC} and BC\overrightarrow{BC}.

The coordinates of points:

  • A=(2,3,4)A = (2, 3, -4),
  • B=(5,9,5)B = (-5, -9, -5),
  • C=(5,9,1)C = (5, 9, -1).

Calculate vectors:

  • AC=CA=(52 93 1(4))=(3 6 3)\overrightarrow{AC} = C - A = \begin{pmatrix} 5 - 2 \\\ 9 - 3 \\\ -1 - (-4) \end{pmatrix} = \begin{pmatrix} 3 \\\ 6 \\\ 3 \end{pmatrix}

  • BC=CB=(5(5) 9(9) 1(5))=(10 18 4)\overrightarrow{BC} = C - B = \begin{pmatrix} 5 - (-5) \\\ 9 - (-9) \\\ -1 - (-5) \end{pmatrix} = \begin{pmatrix} 10 \\\ 18 \\\ 4 \end{pmatrix}

Now, find the dot product: ACBC=(3)(10)+(6)(18)+(3)(4)=30+108+12=150\overrightarrow{AC} \cdot \overrightarrow{BC} = (3)(10) + (6)(18) + (3)(4) = 30 + 108 + 12 = 150

Find magnitudes: AC=32+62+32=9+36+9=54=36|\overrightarrow{AC}| = \sqrt{3^2 + 6^2 + 3^2} = \sqrt{9 + 36 + 9} = \sqrt{54} = 3\sqrt{6} BC=102+182+42=100+324+16=440=2110|\overrightarrow{BC}| = \sqrt{10^2 + 18^2 + 4^2} = \sqrt{100 + 324 + 16} = \sqrt{440} = 2\sqrt{110}

Use the cosine formula for angle ACB\angle ACB: cosθ=ACBCACBC=150(36)(2110)\cos \theta = \frac{\overrightarrow{AC} \cdot \overrightarrow{BC}}{|\overrightarrow{AC}| |\overrightarrow{BC}|} = \frac{150}{(3\sqrt{6})(2\sqrt{110})} Calculating gives: θ=cos1(1506660)57.95 degrees.\theta = \cos^{-1} \left( \frac{150}{6\sqrt{660}}\right) \approx 57.95 \text{ degrees.}

Step 3

c) Hence, or otherwise, find the area of the triangle ABC.

96%

101 rated

Answer

To find the area of triangle ABCABC, we can use the formula: Area=12AC×BC\text{Area} = \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BC}|

First, let's compute the cross product AC×BC\overrightarrow{AC} \times \overrightarrow{BC}.

Using components:

  • AC=(3 6 3)\overrightarrow{AC} = \begin{pmatrix} 3 \\\ 6 \\\ 3 \end{pmatrix}
  • BC=(10 18 4)\overrightarrow{BC} = \begin{pmatrix} 10 \\\ 18 \\\ 4 \end{pmatrix}

Cross product: AC×BC=i^j^k^ 363 10184\overrightarrow{AC} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\\ 3 & 6 & 3 \\\ 10 & 18 & 4 \end{vmatrix}

Calculating the determinant gives: i^(64318)j^(34310)+k^(318610)\hat{i}(6 \cdot 4 - 3 \cdot 18) - \hat{j}(3 \cdot 4 - 3 \cdot 10) + \hat{k}(3 \cdot 18 - 6 \cdot 10) =i^(2454)j^(1230)+k^(5460)= \hat{i}(24 - 54) - \hat{j}(12 - 30) + \hat{k}(54 - 60) =30i^+18j^6k^= -30\hat{i} + 18\hat{j} - 6\hat{k}

Magnitude of the cross product: AC×BC=(30)2+182+(6)2=900+324+36=1260=635|\overrightarrow{AC} \times \overrightarrow{BC}| = \sqrt{(-30)^2 + 18^2 + (-6)^2} = \sqrt{900 + 324 + 36} = \sqrt{1260} = 6\sqrt{35}

Thus, the area of triangle ABCABC is: Area=12AC×BC=12(635)15533.5\text{Area} = \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BC}| = \frac{1}{2}(6\sqrt{35}) \approx 15\sqrt{5} \approx 33.5

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;