Photo AI
Question 2
8. (a) Using the substitution $x = 2 \cos u$, or otherwise, find the exact value of \[ \int_1^{\sqrt{2}} \frac{1}{x^2 \sqrt{4-x^2}} \, dx \] (b) Using your answer ... show full transcript
Step 1
Answer
We start with the integral:
[ I = \int_1^{\sqrt{2}} \frac{1}{x^2 \sqrt{4-x^2}} , dx ]
Using the substitution , we have: [ dx = -2 \sin u , du ]
The limits of integration change:
Now substituting in the integral gives:
[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-2 \sin u}{(2 \cos u)^2 \sqrt{4 - (2 \cos u)^2}} , du ]
This simplifies to: [ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-2 \sin u}{4 \cos^2 u \sqrt{4(1 - \cos^2 u)}} , du ]
Knowing that gives us: [ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-2 \sin u}{4 \cos^2 u , 2 \sin u} , du = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{-1}{2 \cos^2 u} , du ]
This leads to:
[ I = -\frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec^2 u , du ]
Calculating the integral: [ I = -\frac{1}{2} \left[ \tan u \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}} = -\frac{1}{2}\left(\tan\left(\frac{\pi}{3}\right) - \tan\left(\frac{\pi}{4}\right)\right) = -\frac{1}{2}(\sqrt{3} - 1) = \frac{1 - \sqrt{3}}{2} ]
Step 2
Answer
Using the result from part (a), the volume of the solid of revolution can be found using the formula: [ V = \pi \int_a^b f(x)^2 , dx ]
For our case: [ V = 2\pi \cdot \frac{-1}{2} \cdot \left(\sqrt{2}-1\right) = -\pi(1-\sqrt{2}) = \frac{\pi(\sqrt{2}-1)}{4} ]
Report Improved Results
Recommend to friends
Students Supported
Questions answered