With respect to a fixed origin O, the lines l₁ and l₂ are given by the equations
l₁: r = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}
l₂: r = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}
where \lambda and \mu are scalar parameters and p is a constant - Edexcel - A-Level Maths Pure - Question 5 - 2015 - Paper 4
Question 5
With respect to a fixed origin O, the lines l₁ and l₂ are given by the equations
l₁: r = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1... show full transcript
Worked Solution & Example Answer:With respect to a fixed origin O, the lines l₁ and l₂ are given by the equations
l₁: r = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}
l₂: r = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}
where \lambda and \mu are scalar parameters and p is a constant - Edexcel - A-Level Maths Pure - Question 5 - 2015 - Paper 4
Step 1
Find the coordinates of A.
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the intersection point A of lines l₁ and l₂, we equate the vector representations: