Photo AI

3. (a) Find \( \int x \cos 2x \, dx \) - Edexcel - A-Level Maths Pure - Question 4 - 2007 - Paper 7

Question icon

Question 4

3.-(a)-Find-\(-\int-x-\cos-2x-\,-dx-\)-Edexcel-A-Level Maths Pure-Question 4-2007-Paper 7.png

3. (a) Find \( \int x \cos 2x \, dx \). (b) Hence, using the identity \( \cos 2x = 2 \cos^2 x - 1 \), deduce \( \int x \cos^2 x \, dx \).

Worked Solution & Example Answer:3. (a) Find \( \int x \cos 2x \, dx \) - Edexcel - A-Level Maths Pure - Question 4 - 2007 - Paper 7

Step 1

Find \( \int x \cos 2x \, dx \).

96%

114 rated

Answer

To solve the integral ( \int x \cos 2x , dx ), we use integration by parts, where we let:

  • ( u = x )
  • ( dv = \cos 2x , dx )

This gives us:

  • ( du = dx )
  • ( v = \frac{1}{2} \sin 2x )

Applying the integration by parts formula ( \int u , dv = uv - \int v , du ):

[ \int x \cos 2x , dx = \left( x \cdot \frac{1}{2} \sin 2x \right) - \int \frac{1}{2} \sin 2x , dx ]

Now, we compute ( \int \sin 2x , dx ):

[ \int \sin 2x , dx = -\frac{1}{2} \cos 2x + C ]

Thus, substituting back, we have:

[ \int x \cos 2x , dx = \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + C ]

Step 2

Hence, using the identity \( \cos 2x = 2 \cos^2 x - 1 \), deduce \( \int x \cos^2 x \, dx \).

99%

104 rated

Answer

Using the identity ( \cos 2x = 2 \cos^2 x - 1 ), we can express the integral as follows:

[ \int x \cos^2 x , dx = \int x \left( \frac{1}{2} (\cos 2x + 1) \right) dx = \frac{1}{2} \int x \cos 2x , dx + \frac{1}{2} \int x , dx ]

From part (a), we already found that:

[ \int x \cos 2x , dx = \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + C ]

Also, ( \int x , dx = \frac{1}{2} x^2 + C ). Therefore:

[ \int x \cos^2 x , dx = \frac{1}{4} x \sin 2x + \frac{1}{8} \cos 2x + \frac{1}{4} \left( \frac{1}{2} x^2 \right) + C ]

This yields:

[ \int x \cos^2 x , dx = \frac{1}{4} x \sin 2x + \frac{1}{8} \cos 2x + \frac{1}{8} x^2 + C ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;