Photo AI

2. (a) Use integration by parts to find $\, \int x \sin 3x \, dx.\ (b) Using your answer to part (a), find $\, \int x^2 \cos 3x \, dx.\ - Edexcel - A-Level Maths Pure - Question 4 - 2012 - Paper 8

Question icon

Question 4

2.-(a)-Use-integration-by-parts-to-find--$\,-\int-x-\sin-3x-\,-dx.\----(b)-Using-your-answer-to-part-(a),-find--$\,-\int-x^2-\cos-3x-\,-dx.\-Edexcel-A-Level Maths Pure-Question 4-2012-Paper 8.png

2. (a) Use integration by parts to find $\, \int x \sin 3x \, dx.\ (b) Using your answer to part (a), find $\, \int x^2 \cos 3x \, dx.\

Worked Solution & Example Answer:2. (a) Use integration by parts to find $\, \int x \sin 3x \, dx.\ (b) Using your answer to part (a), find $\, \int x^2 \cos 3x \, dx.\ - Edexcel - A-Level Maths Pure - Question 4 - 2012 - Paper 8

Step 1

Use integration by parts to find $\, \int x \sin 3x \, dx.$

96%

114 rated

Answer

To solve xsin3xdx,\, \int x \sin 3x \, dx, we use the integration by parts formula:

udv=uvvdu\int u \, dv = u v - \int v \, du

Here, we can choose:

  • Let u=xu = x, so du=dxdu = dx
  • Let dv=sin3xdxdv = \sin 3x \, dx, so v=13cos3xv = -\frac{1}{3} \cos 3x

Substituting these into the formula, we get:

xsin3xdx=13xcos3x13cos3xdx\int x \sin 3x \, dx = -\frac{1}{3} x \cos 3x - \int -\frac{1}{3} \cos 3x \, dx

Now we evaluate the integral:

cos3xdx=13sin3x+C\int \cos 3x \, dx = \frac{1}{3} \sin 3x + C

So, substituting back, the expression becomes:

xsin3xdx=13xcos3x+1313sin3x+C\int x \sin 3x \, dx = -\frac{1}{3} x \cos 3x + \frac{1}{3} \cdot \frac{1}{3} \sin 3x + C

Thus, simplifying gives:

xsin3xdx=13xcos3x+19sin3x+C\int x \sin 3x \, dx = -\frac{1}{3} x \cos 3x + \frac{1}{9} \sin 3x + C

Step 2

Using your answer to part (a), find $\, \int x^2 \cos 3x \, dx.$

99%

104 rated

Answer

Using the result from part (a), we apply integration by parts again for x2cos3xdx\int x^2 \cos 3x \, dx.

Let:

  • u=x2u = x^2 so du=2xdxdu = 2x \, dx
  • dv=cos3xdxdv = \cos 3x \, dx, so v=13sin3xv = \frac{1}{3} \sin 3x

Applying integration by parts gives:

x2cos3xdx=13x2sin3x23xsin3xdx\int x^2 \cos 3x \, dx = \frac{1}{3} x^2 \sin 3x - \int \frac{2}{3} x \sin 3x \, dx

From part (a), we know: xsin3xdx=13xcos3x+19sin3x+C\int x \sin 3x \, dx = -\frac{1}{3} x \cos 3x + \frac{1}{9} \sin 3x + C

Substituting this back into our expression gives:

x2cos3xdx=13x2sin3x+23(13xcos3x+19sin3x)+C\int x^2 \cos 3x \, dx = \frac{1}{3} x^2 \sin 3x + \frac{2}{3} \left( -\frac{1}{3} x \cos 3x + \frac{1}{9} \sin 3x \right) + C

Thus, simplifying further yields: x2cos3xdx=13x2sin3x29xcos3x+227sin3x+C\int x^2 \cos 3x \, dx = \frac{1}{3} x^2 \sin 3x - \frac{2}{9} x \cos 3x + \frac{2}{27} \sin 3x + C

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;