Photo AI

The curve C has parametric equations $x = 2 \, cos \, t, \; y = \sqrt{3} \; cos \, 2t, \; 0 \leq t \leq \pi$ - Edexcel - A-Level Maths Pure - Question 14 - 2017 - Paper 1

Question icon

Question 14

The-curve-C-has-parametric-equations--$x-=-2-\,-cos-\,-t,-\;-y-=-\sqrt{3}-\;-cos-\,-2t,-\;-0-\leq-t-\leq-\pi$-Edexcel-A-Level Maths Pure-Question 14-2017-Paper 1.png

The curve C has parametric equations $x = 2 \, cos \, t, \; y = \sqrt{3} \; cos \, 2t, \; 0 \leq t \leq \pi$. (a) Find an expression for \( \frac{dy}{dx} \) in ter... show full transcript

Worked Solution & Example Answer:The curve C has parametric equations $x = 2 \, cos \, t, \; y = \sqrt{3} \; cos \, 2t, \; 0 \leq t \leq \pi$ - Edexcel - A-Level Maths Pure - Question 14 - 2017 - Paper 1

Step 1

Find an expression for \( \frac{dy}{dx} \) in terms of \( t \)

96%

114 rated

Answer

To find ( \frac{dy}{dx} ), we can use the chain rule:

dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

First, compute ( \frac{dx}{dt} ) and ( \frac{dy}{dt} ):

[ x = 2 \cos(t) \quad \Rightarrow \quad \frac{dx}{dt} = -2 \sin(t) ]

[ y = \sqrt{3} \cos(2t) \quad \Rightarrow \quad \frac{dy}{dt} = -2\sqrt{3} \sin(2t) ]

Now substitute these into the formula:

dydx=23sin(2t)2sin(t)=3sin(2t)sin(t)\frac{dy}{dx} = \frac{-2\sqrt{3} \sin(2t)}{-2 \sin(t)} = \frac{\sqrt{3} \sin(2t)}{\sin(t)}

We can simplify further using the double angle identity, ( \sin(2t) = 2 \sin(t) \cos(t) ):

dydx=32sin(t)cos(t)sin(t)=23cos(t)\frac{dy}{dx} = \frac{\sqrt{3} \cdot 2 \sin(t) \cos(t)}{\sin(t)} = 2\sqrt{3} \cos(t)

Step 2

Show that an equation for \( l \) is $2x - 2\sqrt{3}y - 1 = 0$

99%

104 rated

Answer

To find ( l ), we first find the coordinates of point P when ( t = \frac{2\pi}{3} ):

[ x = 2 \cos \left(\frac{2\pi}{3}\right) = -1, \quad y = \sqrt{3} \cos \left(\frac{4\pi}{3}\right) = -\sqrt{3} ]

Thus, the coordinates of P are ( (-1, -\sqrt{3}) ).

The gradient of the normal line ( l ) is the negative reciprocal of ( \frac{dy}{dx} ) at P:

At ( t = \frac{2\pi}{3} ):

[ \frac{dy}{dx} = 2\sqrt{3} \cdot \cos \left(\frac{2\pi}{3}\right) = 2\sqrt{3} \cdot \left(-\frac{1}{2}\right) = -\sqrt{3} ]

Therefore, the gradient of line ( l ) is:

[ m = \frac{1}{\sqrt{3}} ]

Using point-slope form to find the equation of line ( l ):

[ y - (-\sqrt{3}) = \frac{1}{\sqrt{3}}(x - (-1)) ]

Simplifying:

[ y + \sqrt{3} = \frac{1}{\sqrt{3}}(x + 1) ]

Multiplying through by ( \sqrt{3} ) gives:

[ \sqrt{3}y + 3 = x + 1 \rightarrow 2x - 2\sqrt{3}y - 1 = 0\text{, which is the required form.} ]

Step 3

Find the exact coordinates of Q

96%

101 rated

Answer

To find the points of intersection, substitute the equation of line ( l ) into the parametric equations:

  1. Substitute ( y = \frac{1}{\sqrt{3}}(x + 1) - \sqrt{3} ) into the parametric equation of y:

[ y = \sqrt{3} \cos(2t) \rightarrow \frac{1}{\sqrt{3}}(x + 1) - \sqrt{3} = \sqrt{3} \cos(2t) ]

  1. Using ( x = 2\cos(t) ):

Substituting the expression for ( y ):

[ -2\sqrt{3} \cos(2t) = 2\cos(t) \rightarrow 12\cos^2(t) - 4\cos(t) - 5 = 0 ]

  1. Solving this quadratic using the quadratic formula:

[ \cos(t) = \frac{4 \pm \sqrt{16 + 240}}{24} = \frac{4 \pm 16}{24} \rightarrow \cos(t) = \frac{5}{6} \text{ or } -\frac{7}{6} ] (discarding the second solution)

  1. Finding ( t ) from ( \cos(t) = \frac{5}{6} ).

  2. Substitute back to find ( x ) and ( y ) values:

[ x = 2\left(\frac{5}{6}\right) = \frac{5}{3}, \quad y = \sqrt{3} \cdot \sqrt{1 - \left(\frac{5}{6}\right)^2} = \frac{7}{18\sqrt{3}} ]

Thus, the coordinates of Q are:

[ Q = \left(\frac{5}{3}, \frac{7}{18\sqrt{3}}\right) ]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;