Photo AI

12. (a) Prove \[ \frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 2 \cot 2\theta \] \( \theta \pm (90n)^\circ, n \in \mathbb{Z} \) (b) Hence solve, for \( 90^\circ < \theta < 180^\circ \), the equation \[ \frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 4 \] giving any solutions to one decimal place. - Edexcel - A-Level Maths Pure - Question 14 - 2019 - Paper 2

Question icon

Question 14

12.-(a)-Prove--\[-\frac{\cos-3\theta}{\sin-\theta}-+-\frac{\sin-3\theta}{\cos-\theta}-=-2-\cot-2\theta-\]--\(-\theta-\pm-(90n)^\circ,-n-\in-\mathbb{Z}-\)----(b)-Hence-solve,-for-\(-90^\circ-<-\theta-<-180^\circ-\),-the-equation--\[-\frac{\cos-3\theta}{\sin-\theta}-+-\frac{\sin-3\theta}{\cos-\theta}-=-4-\]--giving-any-solutions-to-one-decimal-place.-Edexcel-A-Level Maths Pure-Question 14-2019-Paper 2.png

12. (a) Prove \[ \frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 2 \cot 2\theta \] \( \theta \pm (90n)^\circ, n \in \mathbb{Z} \) (b) Henc... show full transcript

Worked Solution & Example Answer:12. (a) Prove \[ \frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 2 \cot 2\theta \] \( \theta \pm (90n)^\circ, n \in \mathbb{Z} \) (b) Hence solve, for \( 90^\circ < \theta < 180^\circ \), the equation \[ \frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 4 \] giving any solutions to one decimal place. - Edexcel - A-Level Maths Pure - Question 14 - 2019 - Paper 2

Step 1

Prove \[ \frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 2 \cot 2\theta \]

96%

114 rated

Answer

To prove the equation, we start with the left-hand side (LHS):

[ \frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = \frac{\cos 3\theta \cos \theta + \sin 3\theta \sin \theta}{\sin \theta \cos \theta} ]

Using the angle addition formula, we simplify:

[ \text{LHS} = \frac{\cos(3\theta - \theta)}{\sin \theta \cos \theta} = \frac{\cos 2\theta}{\sin \theta \cos \theta} ]

We know that ( \cot 2\theta = \frac{\cos 2\theta}{\sin 2\theta} ), which leads us to:

[ \frac{\cos 2\theta}{\sin \theta \cos \theta} \cdot \frac{2}{2} = 2 \cot 2\theta ]

Thus, confirming the given identity.

Step 2

Hence solve, for \( 90^\circ < \theta < 180^\circ \), the equation \[ \frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 4 \]

99%

104 rated

Answer

From the earlier derived formula:

[ \frac{\cos 3\theta}{\sin \theta} + \frac{\sin 3\theta}{\cos \theta} = 2 \cot 2\theta = 4 ]

We can simplify this to:

[ 2 \cot 2\theta = 4 \implies \cot 2\theta = 2 ]

Taking the cotangent inverse:

[ 2\theta = \arctan\left(\frac{1}{2}\right) ]

Thus:

[ \theta = \frac{1}{2} \arctan\left(\frac{1}{2}\right) + n(90)^\circ ]

Calculating the angle within ( 90^\circ < \theta < 180^\circ ):

The solution is: ( \theta \approx 103.3^\circ ).
Thus, the only solution to one decimal place is ( \theta = 103.3^\circ ).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;