Photo AI

Given that $y = ext{sec} \, x$, complete the table with the values of $y$ corresponding to $x = \frac{\pi}{16}, \frac{\pi}{8}$ and $\frac{\pi}{4}$ - Edexcel - A-Level Maths Pure - Question 4 - 2006 - Paper 7

Question icon

Question 4

Given-that-$y-=--ext{sec}-\,-x$,-complete-the-table-with-the-values-of-$y$-corresponding-to-$x-=-\frac{\pi}{16},-\frac{\pi}{8}$-and-$\frac{\pi}{4}$-Edexcel-A-Level Maths Pure-Question 4-2006-Paper 7.png

Given that $y = ext{sec} \, x$, complete the table with the values of $y$ corresponding to $x = \frac{\pi}{16}, \frac{\pi}{8}$ and $\frac{\pi}{4}$. | x ... show full transcript

Worked Solution & Example Answer:Given that $y = ext{sec} \, x$, complete the table with the values of $y$ corresponding to $x = \frac{\pi}{16}, \frac{\pi}{8}$ and $\frac{\pi}{4}$ - Edexcel - A-Level Maths Pure - Question 4 - 2006 - Paper 7

Step 1

Complete the table for $y$ values

96%

114 rated

Answer

The values for yy corresponding to the given xx values are calculated as follows:

  1. For x=π16x = \frac{\pi}{16}: y=sec(π16)1.01959y = \text{sec}(\frac{\pi}{16}) \approx 1.01959
  2. For x=π8x = \frac{\pi}{8}: y=sec(π8)1.08239y = \text{sec}(\frac{\pi}{8}) \approx 1.08239
  3. For x=3π16x = \frac{3\pi}{16}: y=sec(3π16)1.20269y = \text{sec}(\frac{3\pi}{16}) \approx 1.20269
  4. For x=π4x = \frac{\pi}{4}: y=sec(π4)1.41421y = \text{sec}(\frac{\pi}{4}) \approx 1.41421

The completed table is as follows:

x0π16\frac{\pi}{16}π8\frac{\pi}{8}3π16\frac{3\pi}{16}π4\frac{\pi}{4}
y11.019591.082391.202691.41421

Step 2

Estimate the integral using the trapezium rule

99%

104 rated

Answer

To estimate the integral using the trapezium rule, we use the formula:

Iba2n[f(a)+2i=1n1f(xi)+f(b)]I \approx \frac{b - a}{2n} [f(a) + 2\sum_{i=1}^{n-1} f(x_i) + f(b)]

Where:

  • n=4n = 4 (the number of segments)
  • a=0a = 0, b=π4b = \frac{\pi}{4}
  • f(x)=secxf(x) = \text{sec} \, x

Thus, the integral can be estimated as:

Iπ402imes4[1+2(1.01959+1.08239+1.20269)+1.41421]I \approx \frac{\frac{\pi}{4} - 0}{2 imes 4} [1 + 2(1.01959 + 1.08239 + 1.20269) + 1.41421]

Calculating the sum: Iπ48[1+2(1.01959+1.08239+1.20269)+1.41421]π48[1+2(3.30467)+1.41421]I \approx \frac{\frac{\pi}{4}}{8} [1 + 2(1.01959 + 1.08239 + 1.20269) + 1.41421] \approx \frac{\frac{\pi}{4}}{8} [1 + 2(3.30467) + 1.41421]

Then simplifying: Iπ48[1+6.60934+1.41421]π48[8.02355]0.8859I \approx \frac{\frac{\pi}{4}}{8} [1 + 6.60934 + 1.41421] \approx \frac{\frac{\pi}{4}}{8} [8.02355] \approx 0.8859

Thus, the estimate for the integral is approximately 0.88590.8859.

Step 3

Calculate the % error

96%

101 rated

Answer

The exact value of the integral is given as:

0π4secxdx=ln(1+2)\int_0^{\frac{\pi}{4}} \text{sec} \, x \, dx = \ln(1 + \sqrt{2})

Using a calculator, we find that: 0.88137\approx 0.88137

Now calculating the percent error using the formula:

Percentage Error=approxexactexact×100\text{Percentage Error} = \frac{\text{approx} - \text{exact}}{\text{exact}} \times 100

Substituting the values: Percentage Error=0.88590.881370.88137×1000.51%\text{Percentage Error} = \frac{0.8859 - 0.88137}{0.88137} \times 100 \approx 0.51\%

Thus, the % error in the estimate obtained in part (b) is approximately 0.51%0.51\%.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;