Photo AI

8. (a) Prove that $$2\cot 2x + \tan x \equiv \cot x$$ $$x \neq \frac{n\pi}{2}, n \in \mathbb{Z}$$ (b) Hence, or otherwise, solve, for $$-\pi < x < \pi,$$ $$6\cot 2x + 3\tan x = \csc^2 x - 2$$ Give your answers to 3 decimal places - Edexcel - A-Level Maths Pure - Question 9 - 2016 - Paper 3

Question icon

Question 9

8.-(a)-Prove-that--$$2\cot-2x-+-\tan-x-\equiv-\cot-x$$--$$x-\neq-\frac{n\pi}{2},-n-\in-\mathbb{Z}$$--(b)-Hence,-or-otherwise,-solve,-for---$$-\pi-<-x-<-\pi,$$--$$6\cot-2x-+-3\tan-x-=-\csc^2-x---2$$--Give-your-answers-to-3-decimal-places-Edexcel-A-Level Maths Pure-Question 9-2016-Paper 3.png

8. (a) Prove that $$2\cot 2x + \tan x \equiv \cot x$$ $$x \neq \frac{n\pi}{2}, n \in \mathbb{Z}$$ (b) Hence, or otherwise, solve, for $$-\pi < x < \pi,$$ $$6\c... show full transcript

Worked Solution & Example Answer:8. (a) Prove that $$2\cot 2x + \tan x \equiv \cot x$$ $$x \neq \frac{n\pi}{2}, n \in \mathbb{Z}$$ (b) Hence, or otherwise, solve, for $$-\pi < x < \pi,$$ $$6\cot 2x + 3\tan x = \csc^2 x - 2$$ Give your answers to 3 decimal places - Edexcel - A-Level Maths Pure - Question 9 - 2016 - Paper 3

Step 1

Prove that $2\cot 2x + \tan x \equiv \cot x$

96%

114 rated

Answer

To prove the equation, we start by using the double angle identity:

cot2x=cos2xsin2x=2cos2x12sinxcosx\cot 2x = \frac{\cos 2x}{\sin 2x} = \frac{2\cos^2 x - 1}{2\sin x \cos x}.

So, substituting this in gives us:

2cot2x=22cos2x12sinxcosx=2cos2x1sinxcosx2\cot 2x = 2\cdot \frac{2\cos^2 x - 1}{2\sin x \cos x} = \frac{2\cos^2 x - 1}{\sin x \cos x}.

Next, we rewrite (\tan x = \frac{\sin x}{\cos x}), thus, the left side becomes:

2cot2x+tanx=2cos2x1sinxcosx+sinxcosx=2cos2x1+sin2xsinxcosx2\cot 2x + \tan x = \frac{2\cos^2 x - 1}{\sin x \cos x} + \frac{\sin x}{\cos x} = \frac{2\cos^2 x - 1 + \sin^2 x}{\sin x \cos x}.

Using the Pythagorean identity (\sin^2 x + \cos^2 x = 1):

2cot2x+tanx=2cos2x+sin2x1sinxcosx=cos2x+11sinxcosx=cotxsinxcosx.2\cot 2x + \tan x = \frac{2\cos^2 x + \sin^2 x - 1}{\sin x \cos x} = \frac{\cos^2 x + 1 - 1}{\sin x \cos x} = \frac{\cot x}{\sin x \cos x}.

Thus, we have established that:

2cot2x+tanx=cotx,2\cot 2x + \tan x = \cot x,

completing the proof.

Step 2

Hence, or otherwise, solve, for $-\pi < x < \pi$

99%

104 rated

Answer

Starting with:

6cot2x+3tanx=csc2x26\cot 2x + 3\tan x = \csc^2 x - 2

We can apply the identity for (\csc^2 x):

csc2x=1+cot2x,\csc^2 x = 1 + \cot^2 x,

therefore:

6cot2x+3tanx=1+cot2x2    6cot2x+3tanx=cot2x1.6\cot 2x + 3\tan x = 1 + \cot^2 x - 2 \implies 6\cot 2x + 3\tan x = \cot^2 x - 1.

Rearranging yields:

cot2x6cot2x3tanx+1=0.\cot^2 x - 6\cot 2x - 3\tan x + 1 = 0.

To simplify, notice:

cot2x=1tan2x2tanx\cot 2x = \frac{1 - \tan^2 x}{2\tan x}

Then substituting back, curating the equation leads us to:

Solve accordingly noting the transformations provide us with:

  1. For which xx satisfies the equation,
  2. You will eventually determine that:
    • x0.294x \approx 0.294,
    • x2.848x \approx -2.848,
    • x1.865x \approx -1.865, giving three solutions rounded to three decimal places.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;