Photo AI

8. (a) Starting from the formulae for sin(A + B) and cos(A + B), prove that $$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$ (b) Deduce that $$\tan\left(\theta + \frac{\pi}{6}\right) = \frac{1 + \sqrt{3} \tan \theta}{\sqrt{3} - \tan \theta}$$ (c) Hence, or otherwise, solve, for $0 \leq \theta < \pi$, $$1 + \sqrt{3} \tan \theta = (\sqrt{3} - \tan \theta) \tan(\pi - \theta)$$ Give your answers as multiples of $\pi$ - Edexcel - A-Level Maths Pure - Question 3 - 2012 - Paper 6

Question icon

Question 3

8.-(a)-Starting-from-the-formulae-for-sin(A-+-B)-and-cos(A-+-B),-prove-that--$$\tan(A-+-B)-=-\frac{\tan-A-+-\tan-B}{1---\tan-A-\tan-B}$$--(b)-Deduce-that--$$\tan\left(\theta-+-\frac{\pi}{6}\right)-=-\frac{1-+-\sqrt{3}-\tan-\theta}{\sqrt{3}---\tan-\theta}$$--(c)-Hence,-or-otherwise,-solve,-for-$0-\leq-\theta-<-\pi$,--$$1-+-\sqrt{3}-\tan-\theta-=-(\sqrt{3}---\tan-\theta)-\tan(\pi---\theta)$$--Give-your-answers-as-multiples-of-$\pi$-Edexcel-A-Level Maths Pure-Question 3-2012-Paper 6.png

8. (a) Starting from the formulae for sin(A + B) and cos(A + B), prove that $$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$ (b) Deduce that $$\tan\le... show full transcript

Worked Solution & Example Answer:8. (a) Starting from the formulae for sin(A + B) and cos(A + B), prove that $$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$ (b) Deduce that $$\tan\left(\theta + \frac{\pi}{6}\right) = \frac{1 + \sqrt{3} \tan \theta}{\sqrt{3} - \tan \theta}$$ (c) Hence, or otherwise, solve, for $0 \leq \theta < \pi$, $$1 + \sqrt{3} \tan \theta = (\sqrt{3} - \tan \theta) \tan(\pi - \theta)$$ Give your answers as multiples of $\pi$ - Edexcel - A-Level Maths Pure - Question 3 - 2012 - Paper 6

Step 1

Prove that $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$

96%

114 rated

Answer

To prove the identity, we start from the definitions of sine and cosine for the angle sum:

sin(A+B)=sinAcosB+cosAsinB\sin(A + B) = \sin A \cos B + \cos A \sin B. cos(A+B)=cosAcosBsinAsinB\cos(A + B) = \cos A \cos B - \sin A \sin B.

By definition, we know that:

tan(A+B)=sin(A+B)cos(A+B)\tan(A + B) = \frac{\sin(A + B)}{\cos(A + B)}.

Substituting the expressions for sine and cosine:

tan(A+B)=sinAcosB+cosAsinBcosAcosBsinAsinB\tan(A + B) = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}.

Now, substituting tanA=sinAcosA\tan A = \frac{\sin A}{\cos A} and tanB=sinBcosB\tan B = \frac{\sin B}{\cos B} gives:

tan(A+B)=tanAcosAcosB+tanBcosAcosBcosAcosBcosAcosBsinAsinB\tan(A + B) = \frac{\frac{\tan A \cos A \cos B + \tan B \cos A \cos B}{\cos A \cos B}}{\cos A \cos B - \sin A \sin B}.

Multiplying both the numerator and denominator by cosAcosB\cos A \cos B results in:

tan(A+B)=tanA+tanB1tanAtanB\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}

Thus, the identity is proved.

Step 2

Deduce that $\tan\left(\theta + \frac{\pi}{6}\right) = \frac{1 + \sqrt{3} \tan \theta}{\sqrt{3} - \tan \theta}$

99%

104 rated

Answer

To deduce this identity, we apply the expression for tan(A+B)\tan(A + B) using angles relevant to our problem:

Let A=θA = \theta and B=π6B = \frac{\pi}{6}. First, compute tanπ6\tan \frac{\pi}{6}, which is known to be:

tanπ6=13\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}

Now substitute this into the equation:

tan(θ+π6)=tanθ+tanπ61tanθtanπ6\tan\left(\theta + \frac{\pi}{6}\right) = \frac{\tan \theta + \tan \frac{\pi}{6}}{1 - \tan \theta \tan \frac{\pi}{6}}

This simplifies to:

tan(θ+π6)=tanθ+131tanθ13\tan\left(\theta + \frac{\pi}{6}\right) = \frac{\tan \theta + \frac{1}{\sqrt{3}}}{1 - \tan \theta \cdot \frac{1}{\sqrt{3}}}

Multiplying both the numerator and denominator by 3\sqrt{3}, we obtain:

tan(θ+π6)=3tanθ+13tanθ\tan\left(\theta + \frac{\pi}{6}\right) = \frac{\sqrt{3} \tan \theta + 1}{\sqrt{3} - \tan \theta}

Thus, the identity is deduced.

Step 3

Solve, for $0 \leq \theta < \pi$: $1 + \sqrt{3} \tan \theta = (\sqrt{3} - \tan \theta) \tan(\pi - \theta)$

96%

101 rated

Answer

Recognizing that tan(πθ)=tanθ\tan(\pi - \theta) = -\tan \theta, we can rewrite the equation as:

1+3tanθ=(3tanθ)(tanθ)1 + \sqrt{3} \tan \theta = (\sqrt{3} - \tan \theta)(-\tan \theta)

This expands to:

1+3tanθ=3tanθ+tan2θ1 + \sqrt{3} \tan \theta = -\sqrt{3} \tan \theta + \tan^2 \theta

Rearranging gives:

tan2θ+(3+3)tanθ1=0\tan^2 \theta + (\sqrt{3} + \sqrt{3}) \tan \theta - 1 = 0

This is a standard quadratic equation in terms of tanθ\tan \theta:

tan2θ+23tanθ1=0\tan^2 \theta + 2\sqrt{3} \tan \theta - 1 = 0

Using the quadratic formula:

tanθ=b±b24ac2a\tan \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} where a=1a = 1, b=23b = 2\sqrt{3}, and c=1c = -1. Then we calculate:

tanθ=23±(23)24(1)(1)2(1)\tan \theta = \frac{-2\sqrt{3} \pm \sqrt{(2\sqrt{3})^2 - 4(1)(-1)}}{2(1)} tanθ=23±12+42\tan \theta = \frac{-2\sqrt{3} \pm \sqrt{12 + 4}}{2} tanθ=23±162\tan \theta = \frac{-2\sqrt{3} \, \pm \sqrt{16}}{2} tanθ=23±42\tan \theta = \frac{-2\sqrt{3} \, \pm 4}{2}

Thus, we find:

  1. tanθ=23\tan \theta = 2 - \sqrt{3}
  2. tanθ=32\tan \theta = -\sqrt{3} - 2

Considering the domain 0θ<π0 \leq \theta < \pi, we compute:

  • For tanθ=23\tan \theta = 2 - \sqrt{3}, we find θ=tan1(23)\theta = \tan^{-1}(2 - \sqrt{3}).
  • The second solution falls outside the valid domain since it gives negative values for tanθ\tan \theta.

Finally, the solution is given in terms of multiples of π\pi as θ=tan1(23)+nπ\theta = \tan^{-1}(2 - \sqrt{3}) + n\pi, where n=0n = 0.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;