Photo AI

Figure 1 shows part of the curve with equation $y = \, \sqrt{\tan x}$ - Edexcel - A-Level Maths Pure - Question 8 - 2007 - Paper 8

Question icon

Question 8

Figure-1-shows-part-of-the-curve-with-equation-$y-=-\,-\sqrt{\tan-x}$-Edexcel-A-Level Maths Pure-Question 8-2007-Paper 8.png

Figure 1 shows part of the curve with equation $y = \, \sqrt{\tan x}$. The finite region $R$, which is bounded by the curve, the x-axis and the line $x = \frac{\pi}{... show full transcript

Worked Solution & Example Answer:Figure 1 shows part of the curve with equation $y = \, \sqrt{\tan x}$ - Edexcel - A-Level Maths Pure - Question 8 - 2007 - Paper 8

Step 1

Given that $y = \sqrt{\tan x}$, complete the table with the values of $y$ corresponding to

96%

114 rated

Answer

To complete the table, we evaluate y=tanxy = \sqrt{\tan x} for the specified values of x:

  1. For x=0x = 0:
    y=tan(0)=0=0y = \sqrt{\tan(0)} = \sqrt{0} = 0

  2. For x=π16x = \frac{\pi}{16}:
    y=tan(π16)0.4459599320(rounded to 5 decimal places: 0.44600)y = \sqrt{\tan\left(\frac{\pi}{16}\right)} \approx 0.4459599320 \\ \text{(rounded to 5 decimal places: } 0.44600)

  3. For x=π8x = \frac{\pi}{8}:
    y=tan(π8)0.6435035250(rounded to 5 decimal places: 0.64350)y = \sqrt{\tan\left(\frac{\pi}{8}\right)} \approx 0.6435035250 \\ \text{(rounded to 5 decimal places: } 0.64350)

  4. For x=3π16x = \frac{3\pi}{16}:
    y=tan(3π16)0.8172194164(rounded to 5 decimal places: 0.81722)y = \sqrt{\tan\left(\frac{3\pi}{16}\right)} \approx 0.8172194164 \\ \text{(rounded to 5 decimal places: } 0.81722)

Thus, the completed table is:

xy00π160.44600π80.643503π160.81722π41\begin{array}{|c|c|} \hline x & y \\ \hline 0 & 0 \\ \frac{\pi}{16} & 0.44600 \\ \frac{\pi}{8} & 0.64350 \\ \frac{3\pi}{16} & 0.81722 \\ \frac{\pi}{4} & 1 \\ \hline \end{array}

Step 2

Use the trapezium rule with all the values of $y$ in the completed table to obtain an estimate for the area of the shaded region $R$, giving your answer to 4 decimal places.

99%

104 rated

Answer

To apply the trapezium rule:

The formula is given by:

Area=12×h×(y0+2y1+2y2+2y3+y4)\text{Area} = \frac{1}{2} \times h \times (y_0 + 2y_1 + 2y_2 + 2y_3 + y_4)

where:

  • h=π404=π16h = \frac{\frac{\pi}{4} - 0}{4} = \frac{\pi}{16}
  • y0=0y_0 = 0
  • y1=0.44600y_1 = 0.44600
  • y2=0.64350y_2 = 0.64350
  • y3=0.81722y_3 = 0.81722
  • y4=1y_4 = 1

Now substituting these values into the formula:

Area=12×π16×(0+2(0.44600)+2(0.64350)+2(0.81722)+1)\text{Area} = \frac{1}{2} \times \frac{\pi}{16} \times (0 + 2(0.44600) + 2(0.64350) + 2(0.81722) + 1)

Calculating:

=12×π16×(0+0.89200+1.28700+1.63444+1)=12×π16×(4.81344)=π×4.8134432= \frac{1}{2} \times \frac{\pi}{16} \times (0 + 0.89200 + 1.28700 + 1.63444 + 1) \\ = \frac{1}{2} \times \frac{\pi}{16} \times (4.81344) \\ = \frac{\pi \times 4.81344}{32}

Thus, the estimated area of the shaded region RR is approximately: 0.4726 \approx 0.4726 (to 4 decimal places).

Step 3

Use integration to find an exact value for the volume of the solid generated.

96%

101 rated

Answer

To find the volume of the solid generated by rotating the region RR about the x-axis, we use the formula for the volume of revolution:

V=0π4π(y2)dxV = \int_0^{\frac{\pi}{4}} \pi (y^2) \, dx

Substituting y=tanxy = \sqrt{\tan x} gives:

V=0π4π(tanx)dxV = \int_0^{\frac{\pi}{4}} \pi (\tan x) \, dx

This integral can be calculated as:

V=π[ln(cosx)]0π4V = \pi \left[ -\ln(\cos x) \right]_0^{\frac{\pi}{4}}

Calculating the limits:

  1. At x=π4x = \frac{\pi}{4}:
    ln(cos(π4))=ln(12)=12ln(2)-\ln(\cos(\frac{\pi}{4})) = -\ln\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{2} \ln(2)

  2. At x=0x = 0:
    ln(cos(0))=ln(1)=0-\ln(\cos(0)) = -\ln(1) = 0

Thus, combining these gives: V=π(12ln(2)0)=π2ln(2)V = \pi \left( \frac{1}{2} \ln(2) - 0 \right) = \frac{\pi}{2} \ln(2)

Therefore, the exact volume of the solid generated is: V=π2ln(2)V = \frac{\pi}{2} \ln(2)

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;