Photo AI

Figure 1 shows a sketch of the curve C with equation $$y = \frac{4x^2 + x}{2\sqrt{x}} \quad x > 0$$ (a) Show that $$\frac{dy}{dx} = \frac{12x^2 + x - 16\sqrt{x}}{4\sqrt{x}}$$ The point P, shown in Figure 1, is the minimum turning point on C - Edexcel - A-Level Maths Pure - Question 9 - 2020 - Paper 2

Question icon

Question 9

Figure-1-shows-a-sketch-of-the-curve-C-with-equation--$$y-=-\frac{4x^2-+-x}{2\sqrt{x}}-\quad-x->-0$$--(a)-Show-that--$$\frac{dy}{dx}-=-\frac{12x^2-+-x---16\sqrt{x}}{4\sqrt{x}}$$--The-point-P,-shown-in-Figure-1,-is-the-minimum-turning-point-on-C-Edexcel-A-Level Maths Pure-Question 9-2020-Paper 2.png

Figure 1 shows a sketch of the curve C with equation $$y = \frac{4x^2 + x}{2\sqrt{x}} \quad x > 0$$ (a) Show that $$\frac{dy}{dx} = \frac{12x^2 + x - 16\sqrt{x}}{... show full transcript

Worked Solution & Example Answer:Figure 1 shows a sketch of the curve C with equation $$y = \frac{4x^2 + x}{2\sqrt{x}} \quad x > 0$$ (a) Show that $$\frac{dy}{dx} = \frac{12x^2 + x - 16\sqrt{x}}{4\sqrt{x}}$$ The point P, shown in Figure 1, is the minimum turning point on C - Edexcel - A-Level Maths Pure - Question 9 - 2020 - Paper 2

Step 1

Show that $\frac{dy}{dx} = \frac{12x^2 + x - 16\sqrt{x}}{4\sqrt{x}}$

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we will use the quotient rule, which states:

ddx(uv)=uvuvv2\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2}

Here, let:

  • u=4x2+xu = 4x^2 + x
  • v=2xv = 2\sqrt{x}

Calculating the derivatives:

  • u=8x+1u' = 8x + 1
  • v=1xv' = \frac{1}{\sqrt{x}} (using the power rule for roots)

Now applying the quotient rule:

dydx=(8x+1)(2x)(4x2+x)1x(2x)2\frac{dy}{dx} = \frac{(8x + 1)(2\sqrt{x}) - (4x^2 + x) \cdot \frac{1}{\sqrt{x}}}{(2\sqrt{x})^2}

= (16xx+2x)(4x2+x)(1x)4x\frac{(16x\sqrt{x} + 2\sqrt{x}) - (4x^2 + x)\left( \frac{1}{\sqrt{x}} \right)}{4x}

= 16xx+2x(4x+1)x4x\frac{16x\sqrt{x} + 2\sqrt{x} - (4x + 1)\sqrt{x}}{4x}

= (12x2+x16x)4x\frac{(12x^2 + x - 16\sqrt{x})}{4\sqrt{x}}.

Hence, we have shown the required result.

Step 2

Show that the x coordinate of P is a solution of $x = \left( \frac{4 - \sqrt{16}}{3} \right)^{\frac{2}{3}}$

99%

104 rated

Answer

At the minimum turning point PP, the derivative dydx=0\frac{dy}{dx} = 0. Setting the expression obtained in part (a) equal to zero gives:

12x2+x16x=012x^2 + x - 16\sqrt{x} = 0

To solve for xx, we can substitute x=t\sqrt{x} = t (hence, x=t2x = t^2), transforming the equation into:

12t4+t216t=012t^4 + t^2 - 16t = 0

Factoring out tt gives:

t(12t3+t16)=0t(12t^3 + t - 16) = 0

The solution t=0t = 0 is not valid since x>0x > 0. Now we focus on:

12t3+t16=012t^3 + t - 16 = 0

Using numerical methods or estimating, one finds a root around t=4163t = \frac{4 - \sqrt{16}}{3}, so substituting back, we find:

x=(4163)23x = \left( \frac{4 - \sqrt{16}}{3} \right)^{\frac{2}{3}}.

Step 3

Use the iteration formula with $x_1 = 2$ to find (i) the value of $x_2$ to 5 decimal places, (ii) the x coordinate of P to 5 decimal places.

96%

101 rated

Answer

(i) Using the iteration formula:

xn+1=(4xn3)23x_{n+1} = \left( \frac{4 - \sqrt{x_n}}{3} \right)^{\frac{2}{3}}

Starting with x1=2x_1 = 2:

  1. Calculate: x2=(423)231.64397x_2 = \left( \frac{4 - \sqrt{2}}{3} \right)^{\frac{2}{3}} \approx 1.64397 (to 5 decimal places)

(ii) Continue iterating:

  1. Next, $x_3 = \left( \frac{4 - \sqrt{x_2}}{3} \right)^{\frac{2}{3}} \approx 1.16560$$

Thus, the x coordinate of P1.16560P \approx 1.16560 (to 5 decimal places).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;