Photo AI

Figure 2 shows a sketch of the curve C with parametric equations $x = oldsymbol{ rac{oldsymbol{ ext{ ext{√3}}}}{ ext{sin} oldsymbol{2t}}}, oldsymbol{y} = 4 oldsymbol{ ext{cos}} oldsymbol{t}, oldsymbol{0 oldsymbol{ ext{≤}} t ≤ oldsymbol{ ext{π}}}$ (a) Show that $ rac{dy}{dx} = koldsymbol{( rac{ ext{√3}}{ ext{(tan}2t)}})$, where k is a constant to be determined - Edexcel - A-Level Maths Pure - Question 7 - 2012 - Paper 7

Question icon

Question 7

Figure-2-shows-a-sketch-of-the-curve-C-with-parametric-equations--$x-=-oldsymbol{-rac{oldsymbol{-ext{-ext{√3}}}}{-ext{sin}-oldsymbol{2t}}},-oldsymbol{y}-=-4-oldsymbol{-ext{cos}}-oldsymbol{t},-oldsymbol{0-oldsymbol{-ext{≤}}-t-≤-oldsymbol{-ext{π}}}$--(a)-Show-that-$-rac{dy}{dx}-=-koldsymbol{(-rac{-ext{√3}}{-ext{(tan}2t)}})$,-where-k-is-a-constant-to-be-determined-Edexcel-A-Level Maths Pure-Question 7-2012-Paper 7.png

Figure 2 shows a sketch of the curve C with parametric equations $x = oldsymbol{ rac{oldsymbol{ ext{ ext{√3}}}}{ ext{sin} oldsymbol{2t}}}, oldsymbol{y} = 4 old... show full transcript

Worked Solution & Example Answer:Figure 2 shows a sketch of the curve C with parametric equations $x = oldsymbol{ rac{oldsymbol{ ext{ ext{√3}}}}{ ext{sin} oldsymbol{2t}}}, oldsymbol{y} = 4 oldsymbol{ ext{cos}} oldsymbol{t}, oldsymbol{0 oldsymbol{ ext{≤}} t ≤ oldsymbol{ ext{π}}}$ (a) Show that $ rac{dy}{dx} = koldsymbol{( rac{ ext{√3}}{ ext{(tan}2t)}})$, where k is a constant to be determined - Edexcel - A-Level Maths Pure - Question 7 - 2012 - Paper 7

Step 1

Show that $\frac{dy}{dx} = k\left(\frac{\sqrt{3}}{\tan 2t}\right)$, where k is a constant to be determined.

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we first need to calculate dxdt\frac{dx}{dt} and dydt\frac{dy}{dt}.

  1. Differentiate xx with respect to tt:

    x=3sin2t    dxdt=32cos2t=23cos2tx = \sqrt{3} \sin 2t \implies \frac{dx}{dt} = \sqrt{3} \cdot 2 \cos 2t = 2\sqrt{3} \cos 2t

  2. Differentiate yy with respect to tt:

    y=4cost    dydt=4sinty = 4 \cos t \implies \frac{dy}{dt} = -4 \sin t

  3. Now, use the chain rule to find dydx\frac{dy}{dx}:

    dydx=dy/dtdx/dt=4sint23cos2t=2sint3cos2t\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-4 \sin t}{2\sqrt{3} \cos 2t} = \frac{-2 \sin t}{\sqrt{3} \cos 2t}

  4. Use the identity sin2t=2sintcost\sin 2t = 2 \sin t \cos t and tan2t=sin2tcos2t=2sintcostcos2t\tan 2t = \frac{\sin 2t}{\cos 2t} = 2 \frac{\sin t \cos t}{\cos 2t}:

    So we will rewrite it as:

    dydx=k(3tan2t)\frac{dy}{dx} = k\left(\frac{\sqrt{3}}{\tan 2t}\right)

    To find kk, we can compare and determine that k=23k = \frac{2}{3}.

Step 2

Find an equation of the tangent to C at the point where $t = \frac{\pi}{3}$

99%

104 rated

Answer

  1. Calculate the coordinates at t=π3t = \frac{\pi}{3}:

    x=3sin(2π3)=3sin(2π3)=332=32x = \sqrt{3} \sin(2 \cdot \frac{\pi}{3}) = \sqrt{3} \sin\left(\frac{2\pi}{3}\right) = \sqrt{3} \cdot \frac{\sqrt{3}}{2} = \frac{3}{2}

    y=4cos(π3)=412=2y = 4 \cos\left(\frac{\pi}{3}\right) = 4 \cdot \frac{1}{2} = 2

    So the point is (32,2)\left(\frac{3}{2}, 2\right).

  2. Find the slope of the tangent line:

    m=dydxt=π3=33tan(2π3)=2m = \frac{dy}{dx} \bigg|_{t = \frac{\pi}{3}} = \frac{\sqrt{3}}{3} \tan\left(\frac{2\pi}{3}\right) = -2

  3. Use the point-slope form to find the equation of the tangent line:

    y2=2(x32)y - 2 = -2\left(x - \frac{3}{2}\right)

    Simplifying gives:

    y=2x+3+2=2x+5y = -2x + 3 + 2 = -2x + 5

Step 3

Find a Cartesian equation of C.

96%

101 rated

Answer

To eliminate the parameter tt, start with:

x=3sin2t sin2t=x3x = \sqrt{3} \sin 2t \\ \Rightarrow\ sin 2t = \frac{x}{\sqrt{3}}

We need to use the corresponding parametric relation:

y=4costy = 4 \cos t

Knowing that sin2t+cos2t=1\sin^2 t + \cos^2 t = 1, we substitute:

sin2t=1(y4)2\sin^2 t = 1 - \left(\frac{y}{4}\right)^2

Using double angle identity:

sin22t=4sin2tcos2t\sin^2 2t = 4\sin^2 t \cos^2 t

The Cartesian equation simplifies to:

x2=12(1y216)=123y24x^2 = 12 \left(1 - \frac{y^2}{16}\right)\\ = 12 - \frac{3y^2}{4}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;