Photo AI

A curve C has parametric equations $$ x = 2 ext{sin}t, \ y = 1 - ext{cos}2t \\ rac{- rac{ ext{π}}{2} ext{}}{ ext{}} ext{ } rac{≤ t ≤ rac{ ext{π}}{2}}{ }$$ (a) Find $\frac{dy}{dx}$ at the point where $t = \frac{\pi}{6}$ (b) Find a cartesian equation for C in the form $y = f(x), \\ -k ≤ x ≤ k,$ stating the value of the constant $k$ - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 9

Question icon

Question 5

A-curve-C-has-parametric-equations--$$-x-=-2-ext{sin}t,-\-y-=-1----ext{cos}2t-\\--rac{--rac{-ext{π}}{2}--ext{}}{--ext{}}--ext{-}---rac{≤-t-≤--rac{-ext{π}}{2}}{-}$$--(a)-Find-$\frac{dy}{dx}$-at-the-point-where-$t-=-\frac{\pi}{6}$--(b)-Find-a-cartesian-equation-for-C-in-the-form-$y-=-f(x),-\\--k-≤-x-≤-k,$--stating-the-value-of-the-constant-$k$-Edexcel-A-Level Maths Pure-Question 5-2013-Paper 9.png

A curve C has parametric equations $$ x = 2 ext{sin}t, \ y = 1 - ext{cos}2t \\ rac{- rac{ ext{π}}{2} ext{}}{ ext{}} ext{ } rac{≤ t ≤ rac{ ext{π}}{2}}{ }$$ ... show full transcript

Worked Solution & Example Answer:A curve C has parametric equations $$ x = 2 ext{sin}t, \ y = 1 - ext{cos}2t \\ rac{- rac{ ext{π}}{2} ext{}}{ ext{}} ext{ } rac{≤ t ≤ rac{ ext{π}}{2}}{ }$$ (a) Find $\frac{dy}{dx}$ at the point where $t = \frac{\pi}{6}$ (b) Find a cartesian equation for C in the form $y = f(x), \\ -k ≤ x ≤ k,$ stating the value of the constant $k$ - Edexcel - A-Level Maths Pure - Question 5 - 2013 - Paper 9

Step 1

Find $\frac{dy}{dx}$ at the point where $t = \frac{\pi}{6}$

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we need to use the chain rule in parametric equations:

  1. Differentiate xx and yy:
    The equations are: x=2sint,y=1cos2tx = 2 \sin t, \quad y = 1 - \cos 2t Differentiating with respect to tt gives: dxdt=2cost\frac{dx}{dt} = 2 \cos t dydt=2sin2t\frac{dy}{dt} = 2 \sin 2t

  2. Apply the chain rule: To find dydx\frac{dy}{dx}, use: dydx=dy/dtdx/dt=2sin2t2cost=sin2tcost\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2 \sin 2t}{2 \cos t} = \frac{\sin 2t}{\cos t}

  3. Evaluate at t=π6t = \frac{\pi}{6}:
    Substitute t=π6t = \frac{\pi}{6}: dydx=sin(2π6)cos(π6)=sin(π3)32\frac{dy}{dx} = \frac{\sin\left(2\cdot\frac{\pi}{6}\right)}{\cos\left(\frac{\pi}{6}\right)} = \frac{\sin\left(\frac{\pi}{3}\right)}{\frac{\sqrt{3}}{2}} This simplifies to: 3232=1\frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}} = 1 Therefore, dydx=1\frac{dy}{dx} = 1.

Step 2

Find a cartesian equation for C in the form $y = f(x), \ -k ≤ x ≤ k$

99%

104 rated

Answer

To eliminate the parameter tt, we express tt in terms of xx:

  1. **From x=2sintx = 2 \sin t: ** sint=x2\sin t = \frac{x}{2}

  2. Substitute into yy: y=1cos2ty = 1 - \cos 2t Using the double angle identity: cos2t=12sin2t=12(x2)2=1x22\cos 2t = 1 - 2\sin^2 t = 1 - 2\left(\frac{x}{2}\right)^2 = 1 - \frac{x^2}{2}

  3. Thus, yy becomes: y=1(1x22)=x22y = 1 - (1 - \frac{x^2}{2}) = \frac{x^2}{2} Therefore, the cartesian equation is: y=x22y = \frac{x^2}{2}

  4. Identify kk: From 1sint1-1 ≤ \sin t ≤ 1, thus:
    2x2-2 ≤ x ≤ 2, which gives us k=2k = 2.

Step 3

Write down the range of $f(x)$

96%

101 rated

Answer

To find the range of f(x)f(x):

Since: y=x22y = \frac{x^2}{2} When xx is in the interval [2,2][-2, 2], yy will take values from:

  • Minimum at x=0x = 0: f(0)=0f(0) = 0
  • Maximums at x=2x = -2 or x=2x = 2: f(2)=f(2)=2f(-2) = f(2) = 2

Thus, the range of f(x)f(x) is: y[0,2]y \in [0, 2]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;