To prove (\frac{d}{d\theta}(\cos \theta) = -\sin \theta) from first principles, we start by using the definition of the derivative:
dθd(cosθ)=limh→0hcos(θ+h)−cos(θ)
Using the cosine addition formula, we can rewrite this as:
cos(θ+h)=cosθcosh−sinθsinh
Substituting this into our limit, we get:
dθd(cosθ)=limh→0h(cosθcosh−sinθsinh)−cosθ
This simplifies to:
=limh→0hcosθ(cosh−1)−sinθsinh
Now, separate the limit into two parts:
=cosθlimh→0hcosh−1−sinθlimh→0hsinh
Using the limits given:
- As ( h \to 0 ), ( \frac{\sin h}{h} \rightarrow 1 )
- As ( h \to 0 ), ( \frac{\cos h - 1}{h} \rightarrow 0 )
We substitute these values into our limit, resulting in:
=cosθ⋅0−sinθ⋅1
=−sinθ
Thus, we conclude that:
dθd(cosθ)=−sinθ