12. (a) Prove that
$$1 - ext{cos} 2 heta = an heta rac{ ext{sin} 2 heta}{ ext{sin} 2 heta}, heta
eq rac{(2n + 1) ext{π}}{2}, n ext{ } ext{in} ext{ } ext{ℤ}$$
(b) Hence solve, for
$$-rac{ ext{π}}{2} < x < rac{ ext{π}}{2},$$
the equation
$$( ext{sec} x^2 - 5)(1 - ext{cos} 2x) = 3 an' x ext{ sin } 2x$$
Give any non-exact answer to 3 decimal places where appropriate. - Edexcel - A-Level Maths Pure - Question 14 - 2018 - Paper 2
Question 14
12. (a) Prove that
$$1 - ext{cos} 2 heta = an heta rac{ ext{sin} 2 heta}{ ext{sin} 2 heta}, heta
eq rac{(2n + 1) ext{π}}{2}, n ext{ } ext{in} ext{ } ext{... show full transcript
Worked Solution & Example Answer:12. (a) Prove that
$$1 - ext{cos} 2 heta = an heta rac{ ext{sin} 2 heta}{ ext{sin} 2 heta}, heta
eq rac{(2n + 1) ext{π}}{2}, n ext{ } ext{in} ext{ } ext{ℤ}$$
(b) Hence solve, for
$$-rac{ ext{π}}{2} < x < rac{ ext{π}}{2},$$
the equation
$$( ext{sec} x^2 - 5)(1 - ext{cos} 2x) = 3 an' x ext{ sin } 2x$$
Give any non-exact answer to 3 decimal places where appropriate. - Edexcel - A-Level Maths Pure - Question 14 - 2018 - Paper 2
Step 1
Prove that
$$1 - ext{cos} 2 heta = an heta rac{ ext{sin} 2 heta}{ ext{sin} 2 heta}$$
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To prove the identity, we start by using the double angle formulas:
The cosine double angle identity states:
extcos2heta=1−2extsin2heta
Substituting this into the left-hand side gives us:
1−(1−2extsin2heta)=2extsin2heta.
For the right-hand side, we use:
an heta = rac{ ext{sin} heta}{ ext{cos} heta}.
Hence, we have:
anhetaextsin2heta=anheta(2extsinhetaextcosheta)=2extsin2heta.
Since both sides equal to 2extsin2heta, the proof is complete and verified that:
1−extcos2heta=anhetaextsin2heta.
Step 2
Hence solve, for
$$-rac{ ext{π}}{2} < x < rac{ ext{π}}{2},$$ the equation
$$( ext{sec} x^2 - 5)(1 - ext{cos} 2x) = 3 an' x ext{ sin } 2x$$
99%
104 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
Start with the equation:
(extsecx2−5)(1−extcos2x)=3anxextsin2x.
Substitute the known identities:
ext{sec} x = rac{1}{ ext{cos} x}; ext{ and } 1 - ext{cos} 2x = 2 ext{sin}^2 x
The equation can become:
(rac{1}{ ext{cos}^2 x} - 5)(2 ext{sin}^2 x) = 3 an x(2 ext{sin} x ext{cos} x).
From this point, arriving at:
1−5extcos2x=6extcos2x.
Therefore, we can solve for extcos2x:
ightarrow ext{cos}^2 x = rac{1}{11}leadsustofind: ext{cos} x = rac{1}{ ext{√11}}$$.
Now finding extsinx gives:
ightarrow ext{sin} x = rac{ ext{√10}}{ ext{√11}}$$.
Finally, substituting x must fall within the range -rac{ ext{π}}{2} < x < rac{ ext{π}}{2}:
Applying the arcsin or inverse, the solutions will bring us to approximate values.
Finalizing, the answer is to be presented up to three decimal places.