Photo AI
Question 6
In Figure 2 OAB is a sector of a circle, radius 5 m. The chord AB is 6 m long. (a) Show that cos ∠AOB = \( \frac{7}{25} \) (b) Hence find the angle ∠AOB in radians... show full transcript
Step 1
Answer
To find cos ∠AOB, we can use the cosine rule in triangle OAB:
[ c^2 = a^2 + b^2 - 2ab \cdot , cos(C) ]
Here, let:
Substituting the values, we get:
[ 6^2 = 5^2 + 5^2 - 2 \cdot 5 \cdot 5 \cdot cos(\angle AOB) ]
Simplifying this, [ 36 = 25 + 25 - 50 \cdot cos(\angle AOB) ]
[ 36 = 50 - 50 \cdot cos(\angle AOB) ]
[ 50 \cdot cos(\angle AOB) = 50 - 36 ]
[ cos(\angle AOB) = \frac{14}{50} = \frac{7}{25} ]
Step 2
Step 3
Answer
The area of a sector can be calculated using the formula:
[ Area = \frac{1}{2} r^2 \theta ]
Where:
Substituting the values:
[ Area = \frac{1}{2} \cdot 5^2 \cdot 1.287 \approx 16.087 , m^2 ]
Step 4
Answer
To find the shaded area, we subtract the area of triangle OAB from the area of the sector OAB. The formula for the area of a triangle is:
[ Area_{triangle} = \frac{1}{2}ab \sin(C) ]
Using:
The area of triangle OAB is:
[ Area_{triangle} = \frac{1}{2} \cdot 5 \cdot 5 \cdot \sin(1.287) \approx 12 , m^2 ]
Hence, the shaded area is:
[ Shaded Area = Area_{sector} - Area_{triangle} \approx 16.087 - 12 \approx 4.087 , m^2 ]
Report Improved Results
Recommend to friends
Students Supported
Questions answered