Photo AI

5. Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin^2 A - Edexcel - A-Level Maths Pure - Question 5 - 2005 - Paper 5

Question icon

Question 5

5.-Using-the-identity-cos(A-+-B)-=-cos-A-cos-B---sin-A-sin-B,-prove-that-cos-2A-=-1---2-sin^2-A-Edexcel-A-Level Maths Pure-Question 5-2005-Paper 5.png

5. Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin^2 A. (b) Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ(4 cos θ + ... show full transcript

Worked Solution & Example Answer:5. Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin^2 A - Edexcel - A-Level Maths Pure - Question 5 - 2005 - Paper 5

Step 1

Using the identity cos(A + B) = cos A cos B - sin A sin B, prove that cos 2A = 1 - 2 sin^2 A.

96%

114 rated

Answer

To prove the identity, start with the left-hand side:

cos2A=cos(A+A)=cosAcosAsinAsinA=cos2Asin2A.cos 2A = cos(A + A) = cos A cos A - sin A sin A = cos^2 A - sin^2 A.

Using the Pythagorean identity, we know that:

cos2A+sin2A=1,cos^2 A + sin^2 A = 1,

which implies that:

cos2A=1sin2A.cos^2 A = 1 - sin^2 A.

Substituting this into our earlier result gives:

cos2A=(1sin2A)sin2A=12sin2A.cos 2A = (1 - sin^2 A) - sin^2 A = 1 - 2sin^2 A.

This completes the proof.

Step 2

Show that 2 sin 2θ - 3 cos 2θ - 3 sin θ + 3 = sin θ(4 cos θ + 6 sin θ - 3).

99%

104 rated

Answer

Starting with the left-hand side:

2sin2θ3cos2θ3sinθ+3,2 sin 2θ - 3 cos 2θ - 3 sin θ + 3,

we know that:

sin2θ=2sinθcosθ,sin 2θ = 2 sin θ cos θ,

which allows us to rewrite it as:

2(2sinθcosθ)3(2cos2θ1)3sinθ+3.2(2 sin θ cos θ) - 3(2 cos^2 θ - 1) - 3 sin θ + 3.

This simplifies to:

4sinθcosθ6cos2θ+33sinθ.4 sin θ cos θ - 6 cos^2 θ + 3 - 3 sin θ.

Grouping terms, we have:

4sinθcosθ3sinθ+36cos2θ.4 sin θ cos θ - 3 sin θ + 3 - 6 cos^2 θ.

Hence, factor out sin θ from the end:

sinθ(4cosθ+6sinθ3).sin θ(4 cos θ + 6 sin θ - 3).

Step 3

Express 4 cos θ + 6 sin θ in the form R sin(θ + α), where R > 0 and 0 < α < \frac{\pi}{2}.

96%

101 rated

Answer

To express this in the desired form, we first need to calculate R:

R=(42+62)=16+36=52=213.R = \sqrt{(4^2 + 6^2)} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}.

Next, we determine α using:

tan(α)=ba=64=32.tan(α) = \frac{b}{a} = \frac{6}{4} = \frac{3}{2}.

Calculating α gives:

α=arctan(32)0.588extradians(allow33.79°).α = arctan(\frac{3}{2}) ≈ 0.588 ext{ radians} (allow 33.79°).

Step 4

Hence, for 0 ≤ θ < π, solve 2 sin 2θ = \frac{3}{2}(cos 2θ + sin θ - 1).

98%

120 rated

Answer

Start by rearranging the equation:

2sin2θ=32(cos2θ+sinθ1),2 sin 2θ = \frac{3}{2}(cos 2θ + sin θ - 1),

which simplifies to:

sin(2θ)=34(cos2θ+sinθ1).sin(2θ) = \frac{3}{4}(cos 2θ + sin θ - 1).

Use the identity sin(2θ) = 2 sin θ cos θ on the left:

2sinθcosθ=34(cos(2θ)+sin(θ)1).2 sin θ cos θ = \frac{3}{4}(cos(2θ) + sin(θ) - 1).

By solving this numerically, we analyze:

  • The solutions yield approximations in radians:
    • θ ≈ 2.12.
  • Up to 3 significant figures gives us:
    • θ ≈ 0.588.
    • θ ≈ 155.4°.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;