Photo AI

The function $f$ is defined by $$f : x o e^x + k^2, \, x \in \mathbb{R}, \, k \text{ is a positive constant.}$$ (a) State the range of $f$ - Edexcel - A-Level Maths Pure - Question 7 - 2014 - Paper 6

Question icon

Question 7

The-function-$f$-is-defined-by--$$f-:-x--o-e^x-+-k^2,-\,-x-\in-\mathbb{R},-\,-k-\text{-is-a-positive-constant.}$$--(a)-State-the-range-of-$f$-Edexcel-A-Level Maths Pure-Question 7-2014-Paper 6.png

The function $f$ is defined by $$f : x o e^x + k^2, \, x \in \mathbb{R}, \, k \text{ is a positive constant.}$$ (a) State the range of $f$. (b) Find $f^{-1}$ and... show full transcript

Worked Solution & Example Answer:The function $f$ is defined by $$f : x o e^x + k^2, \, x \in \mathbb{R}, \, k \text{ is a positive constant.}$$ (a) State the range of $f$ - Edexcel - A-Level Maths Pure - Question 7 - 2014 - Paper 6

Step 1

a) State the range of $f$.

96%

114 rated

Answer

To find the range of the function f(x)=ex+k2f(x) = e^x + k^2, we note that:

  • The exponential function exe^x takes all positive values, i.e., (0,+)(0, \, +\infty).
  • Adding the positive constant k2k^2 means f(x)>k2f(x) > k^2 for all xRx \in \mathbb{R}.

Thus, the range of ff is: Range of f=(k2,+)\text{Range of } f = (k^2, \, +\infty)

Step 2

b) Find $f^{-1}$ and state its domain.

99%

104 rated

Answer

To find the inverse function, we start with the equation: y=ex+k2y = e^x + k^2 Rearranging gives: ex=yk2e^x = y - k^2 Taking the natural logarithm leads to: x=ln(yk2)x = \ln(y - k^2) Thus, the inverse function is: f1(y)=ln(yk2)f^{-1}(y) = \ln(y - k^2) The domain is determined by requiring the argument of the logarithm to be positive: yk2>0y>k2y - k^2 > 0 \\ \Rightarrow y > k^2 Therefore, the domain of f1f^{-1} is: Domain of f1=(k2,+)\text{Domain of } f^{-1} = (k^2, \, +\infty)

Step 3

c) Solve the equation $g(y) + g(y^2) + g(x) = 6$.

96%

101 rated

Answer

Given the function g(x)=ln(2x)g(x) = \ln(2x), we can rewrite the equation: ln(2y)+ln(2y2)+ln(2x)=6\ln(2y) + \ln(2y^2) + \ln(2x) = 6 This simplifies to: ln(2y)+ln(4y)+ln(2x)=6\ln(2y) + \ln(4y) + \ln(2x) = 6 Combining the logarithms yields: ln(8y2x)=6\ln(8y^2x) = 6 Exponentiating both sides gives: 8y2x=e68y^2x = e^6 Therefore, solving for yy gives: y2=e68x y=e68x=e322xy^2 = \frac{e^6}{8x}\ \\ \Rightarrow y = \sqrt{\frac{e^6}{8x}} = \frac{e^3}{2\sqrt{2x}}

Step 4

d) Find $fg(y)$, giving your answer in its simplest form.

98%

120 rated

Answer

To find fg(y)fg(y), we first compute: g(y)=ln(2y)g(y) = \ln(2y) Then substituting into ff results in: fg(y)=f(g(y))=f(ln(2y))fg(y) = f(g(y)) = f(\ln(2y)) Thus: fg(y)=eln(2y)+k2=2y+k2fg(y) = e^{\ln(2y)} + k^2 = 2y + k^2

Step 5

e) Find, in terms of the constant $k$, the solution of the equation $fg(x) = 2k^2$.

97%

117 rated

Answer

Setting up the equation: fg(x)=2x+k2=2k2fg(x) = 2x + k^2 = 2k^2 We need to isolate xx: 2x+k2=2k22x + k^2 = 2k^2 Rearranging gives: 2x=2k2k22x=k22x = 2k^2 - k^2 \Rightarrow 2x = k^2 Thus, solving for xx results in: x=k22x = \frac{k^2}{2}

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;