Photo AI

6. (a) Show that the equation $$ an 2x = 5 \, ext{sin} \, 2x$$ can be written in the form $$(1 - 5 \, ext{cos} \, 2x) \, ext{sin} \, 2x = 0$$ (b) Hence solve, for $0 \leq x \leq 180^\circ$, $$ an 2x = 5 \, ext{sin} \, 2x$$ giving your answers to 1 decimal place where appropriate - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 3

Question icon

Question 6

6.-(a)-Show-that-the-equation-$$-an-2x-=-5-\,--ext{sin}-\,-2x$$-can-be-written-in-the-form-$$(1---5-\,--ext{cos}-\,-2x)-\,--ext{sin}-\,-2x-=-0$$--(b)-Hence-solve,-for-$0-\leq-x-\leq-180^\circ$,--$$-an-2x-=-5-\,--ext{sin}-\,-2x$$-giving-your-answers-to-1-decimal-place-where-appropriate-Edexcel-A-Level Maths Pure-Question 6-2012-Paper 3.png

6. (a) Show that the equation $$ an 2x = 5 \, ext{sin} \, 2x$$ can be written in the form $$(1 - 5 \, ext{cos} \, 2x) \, ext{sin} \, 2x = 0$$ (b) Hence solve, fo... show full transcript

Worked Solution & Example Answer:6. (a) Show that the equation $$ an 2x = 5 \, ext{sin} \, 2x$$ can be written in the form $$(1 - 5 \, ext{cos} \, 2x) \, ext{sin} \, 2x = 0$$ (b) Hence solve, for $0 \leq x \leq 180^\circ$, $$ an 2x = 5 \, ext{sin} \, 2x$$ giving your answers to 1 decimal place where appropriate - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 3

Step 1

Show that the equation can be written in the form

96%

114 rated

Answer

To show that an2x=5extsin2x an 2x = 5 \, ext{sin} \, 2x can be expressed in the required form, we start by recalling the identity for tangent:

an2x=sin2xcos2x. an 2x = \frac{\text{sin} 2x}{\text{cos} 2x}.

So, we can write:

sin2xcos2x=5sin2x.\frac{\text{sin} 2x}{\text{cos} 2x} = 5 \, \text{sin} 2x.

Multiplying both sides by cos2x\text{cos} 2x (assuming cos2x0\text{cos} 2x \neq 0), we have:

sin2x=5sin2xcos2x.\text{sin} 2x = 5 \, \text{sin} 2x \, \text{cos} 2x.

Rearranging gives:

sin2x5sin2xcos2x=0,\text{sin} 2x - 5 \, \text{sin} 2x \, \text{cos} 2x = 0,

Factoring out sin2x\text{sin} 2x results in:

sin2x(15cos2x)=0.\text{sin} 2x (1 - 5 \, \text{cos} 2x) = 0.

Thus, we have shown that:

(15cos2x)sin2x=0.(1 - 5 \, \text{cos} 2x) \, \text{sin} 2x = 0.

Step 2

Hence solve, for $0 \leq x \leq 180^\circ$,

99%

104 rated

Answer

From the equation:

(15cos2x)sin2x=0,(1 - 5 \, \text{cos} 2x) \, \text{sin} 2x = 0,

we can set each factor to zero:

  1. First Factor:
    sin2x=0\text{sin} 2x = 0
    This gives: 2x=nπ    x=nπ22x = n\pi \implies x = \frac{n\pi}{2}
    For 0x1800 \leq x \leq 180^\circ, we take n=0,1,2n = 0, 1, 2:

    • x=0x = 0^\circ
    • x=90x = 90^\circ
    • x=180x = 180^\circ
  2. Second Factor:
    15cos2x=0impliescos2x=15.1 - 5\text{cos} 2x = 0 \\implies \text{cos} 2x = \frac{1}{5}.
    Therefore, 2x=cos1(15)2x = \cos^{-1}\left(\frac{1}{5}\right)
    and also: 2x=360cos1(15).2x = 360^\circ - \cos^{-1}\left(\frac{1}{5}\right).
    Calculating: cos1(15)78.46.\cos^{-1}\left(\frac{1}{5}\right) \approx 78.46^\circ.
    Thus, 2x78.46impliesx39.23,2x \approx 78.46^\circ \\implies x \approx 39.23^\circ,
    and 2x36078.46281.54impliesx140.77.2x \approx 360 - 78.46 \approx 281.54^\circ \\implies x \approx 140.77^\circ.

Thus, the complete solutions for xx are:

  • x=0x = 0^\circ
  • x39.2x \approx 39.2^\circ
  • x140.8x \approx 140.8^\circ (rounded to 1 decimal place).

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;