Photo AI

The curve C has equation $$16y^3 + 9x^2y - 54x = 0$$ (a) Find $\frac{dy}{dx}$ in terms of $x$ and $y$ - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 7

Question icon

Question 6

The-curve-C-has-equation--$$16y^3-+-9x^2y---54x-=-0$$--(a)-Find-$\frac{dy}{dx}$-in-terms-of-$x$-and-$y$-Edexcel-A-Level Maths Pure-Question 6-2012-Paper 7.png

The curve C has equation $$16y^3 + 9x^2y - 54x = 0$$ (a) Find $\frac{dy}{dx}$ in terms of $x$ and $y$. (b) Find the coordinates of the points on C where $\frac{dy... show full transcript

Worked Solution & Example Answer:The curve C has equation $$16y^3 + 9x^2y - 54x = 0$$ (a) Find $\frac{dy}{dx}$ in terms of $x$ and $y$ - Edexcel - A-Level Maths Pure - Question 6 - 2012 - Paper 7

Step 1

Find $\frac{dy}{dx}$ in terms of $x$ and $y$

96%

114 rated

Answer

To find dydx\frac{dy}{dx}, we differentiate the given equation implicitly with respect to xx:

ddx(16y3)+ddx(9x2y)ddx(54x)=0\frac{d}{dx}(16y^3) + \frac{d}{dx}(9x^2y) - \frac{d}{dx}(54x) = 0

Using the product rule for the second term:

  • For 16y316y^3: we have 48y2dydx48y^2 \frac{dy}{dx}
  • For 9x2y9x^2y: 9(2xy+x2dydx)9(2xy + x^2 \frac{dy}{dx})
  • And 54x54x gives us 5454.

Putting it all together:

48y2dydx+9(2xy+x2dydx)54=048y^2 \frac{dy}{dx} + 9(2xy + x^2 \frac{dy}{dx}) - 54 = 0

This simplifies to:

48y2dydx+18xy+9x2dydx54=048y^2 \frac{dy}{dx} + 18xy + 9x^2 \frac{dy}{dx} - 54 = 0

We can combine the dydx\frac{dy}{dx} terms:

(48y2+9x2)dydx+18xy54=0(48y^2 + 9x^2) \frac{dy}{dx} + 18xy - 54 = 0

Now isolating dydx\frac{dy}{dx} gives:

dydx=5418xy48y2+9x2\frac{dy}{dx} = \frac{54 - 18xy}{48y^2 + 9x^2}

Step 2

Find the coordinates of the points on C where $\frac{dy}{dx} = 0$

99%

104 rated

Answer

Set dydx=0\frac{dy}{dx} = 0:

5418xy=054 - 18xy = 0

This implies:

18xy=54xy=318xy = 54\Rightarrow xy = 3

Next, use the given equation for the curve:

16y3+9x2y54x=016y^3 + 9x^2y - 54x = 0

Substituting y=3xy = \frac{3}{x} into the curve equation:

16(3x)3+9x2(3x)54x=016 \left(\frac{3}{x}\right)^3 + 9x^2 \left(\frac{3}{x}\right) - 54x = 0

This simplifies to:

432x3+2754x=0\frac{432}{x^3} + 27 - 54x = 0

Multiplying through by x3x^3 gives:

432+27x354x4=0432 + 27x^3 - 54x^4 = 0

Rearranging leads to:

54x427x3432=054x^4 - 27x^3 - 432 = 0

Factor out 2727:

2x4x316=02x^4 - x^3 - 16 = 0

Using numerical methods or graphing will show the roots leading to:

  1. x=2x = 2 gives y=32y = \frac{3}{2} → coordinates: (2,32)(2, \frac{3}{2})
  2. x=2x = -2 gives y=32y = -\frac{3}{2} → coordinates: (2,32)(-2, -\frac{3}{2})

Therefore, the coordinates of the points on C where dydx=0\frac{dy}{dx} = 0 are:

(2,32) and (2,32)(2, \frac{3}{2}) \text{ and } (-2, -\frac{3}{2})

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;