Photo AI

With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations l_1 : r = (4, 28, 4) + \ (-1, -5, 1) \lambda\n l_2 : r = (5, 3, 1) + \ (0, 3, -4) \mu where \lambda and \mu are scalar parameters - Edexcel - A-Level Maths Pure - Question 8 - 2017 - Paper 5

Question icon

Question 8

With-respect-to-a-fixed-origin-O,-the-lines-l_1-and-l_2-are-given-by-the-equations-l_1-:-r-=-(4,-28,-4)-+-\-(-1,--5,-1)-\lambda\n-l_2-:-r-=-(5,-3,-1)-+-\-(0,-3,--4)-\mu-where-\lambda-and-\mu-are-scalar-parameters-Edexcel-A-Level Maths Pure-Question 8-2017-Paper 5.png

With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations l_1 : r = (4, 28, 4) + \ (-1, -5, 1) \lambda\n l_2 : r = (5, 3, 1) + \ (0, 3, -4) ... show full transcript

Worked Solution & Example Answer:With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations l_1 : r = (4, 28, 4) + \ (-1, -5, 1) \lambda\n l_2 : r = (5, 3, 1) + \ (0, 3, -4) \mu where \lambda and \mu are scalar parameters - Edexcel - A-Level Maths Pure - Question 8 - 2017 - Paper 5

Step 1

Find the coordinates of the point X.

96%

114 rated

Answer

To find the coordinates of the intersection point X of the two lines, we equate the two vector equations:

(4,28,4)+(1,5,1)λ=(5,3,1)+(0,3,4)μ(4, 28, 4) + (-1, -5, 1) \lambda = (5, 3, 1) + (0, 3, -4) \mu

This gives us a system of equations:

  1. 4λ=54 - \lambda = 5
  2. 285λ=3+3μ28 - 5\lambda = 3 + 3\mu
  3. 4+λ=14μ4 + \lambda = 1 - 4\mu

From equation (1), we have: λ=1\lambda = -1

Substituting \lambda into equation (2):

28+5=3+3μ3μ=30μ=1028 + 5 = 3 + 3\mu \\ 3\mu = 30 \\ \mu = 10

Now substituting \lambda = -1 and \mu = 10 into equation (3) confirms the intersection:

41=1403=34 - 1 = 1 - 40\\ 3 = 3

Thus, the coordinates of point X are (5, 3, 1).

Step 2

Find the size of the acute angle between l_1 and l_2, giving your answer in degrees to 2 decimal places.

99%

104 rated

Answer

To find the angle \theta between the lines l_1 and l_2, we can use the dot product formula:

cosθ=abab\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| ||\mathbf{b}||}

where \mathbf{a} = (-1, -5, 1) and \mathbf{b} = (0, 3, -4).

Calculating the dot product: ab=(1)(0)+(5)(3)+(1)(4)=154=19\mathbf{a} \cdot \mathbf{b} = (-1)(0) + (-5)(3) + (1)(-4) = -15 - 4 = -19

Calculating the magnitudes: a=(1)2+(5)2+(1)2=27||\mathbf{a}|| = \sqrt{(-1)^2 + (-5)^2 + (1)^2} = \sqrt{27} b=(0)2+(3)2+(4)2=25=5||\mathbf{b}|| = \sqrt{(0)^2 + (3)^2 + (-4)^2} = \sqrt{25} = 5

Now plugging these into the formula: cosθ=19275\cos \theta = \frac{-19}{\sqrt{27} \cdot 5}

Calculating \theta yields: θ=cos1(19527)120.63 degrees\theta = \cos^{-1}\left(-\frac{19}{5 \sqrt{27}}\right)\approx 120.63 \text{ degrees}

The acute angle is thus 120.63 degrees.

Step 3

Find the distance AX, giving your answer as a surd in its simplest form.

96%

101 rated

Answer

The position vector of point A is \begin{pmatrix} 2 \ 18 \ 6 \end{pmatrix} and the coordinates of X are (5, 3, 1).

The distance AX can be calculated using: AX=AX=(5231816)=(3155)AX = ||\overrightarrow{AX}|| = ||\begin{pmatrix} 5 - 2 \\ 3 - 18 \\ 1 - 6 \end{pmatrix}|| = ||\begin{pmatrix} 3 \\ -15 \\ -5 \end{pmatrix}||

Calculating this magnitude: AX=32+(15)2+(5)2=9+225+25=259AX = \sqrt{3^2 + (-15)^2 + (-5)^2} = \sqrt{9 + 225 + 25} = \sqrt{259}

So the distance AX is given as \sqrt{259}.

Step 4

Find the distance YA, giving your answer to one decimal place.

98%

120 rated

Answer

Since \overrightarrow{YA} is perpendicular to line l_1, we can find point Y as follows.

Let point Y be represented by \begin{pmatrix} 5 + 0\mu \ 3 + 3\mu \ 1 - 4\mu \end{pmatrix}.

Using the vector conditions: YAa=0\overrightarrow{YA} \cdot \mathbf{a} = 0

Where \overrightarrow{YA} = \begin{pmatrix} 2 - (5 + 0\mu) \ 18 - (3 + 3\mu) \ 6 - (1 - 4\mu) \end{pmatrix}.

Solving \overrightarrow{YA} \cdot \mathbf{a} = 0 leads to: a=(1,5,1)\mathbf{a} = (-1,-5,1) (30μ153μ5+4μ)(151)=0\begin{pmatrix} -3 - 0\mu \\ 15 - 3\mu \\ 5 + 4\mu \end{pmatrix} \cdot \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} = 0

Solving this yields the necessary value for \mu, and substituting that back into the position gives Y.

Using the distance formula: YA=YAYA = ||\overrightarrow{YA}|| yields the numerical value rounded to one decimal place.

Step 5

Find the two possible position vectors of B.

97%

117 rated

Answer

Given that |\overrightarrow{AX}| = 2|\overrightarrow{AB}|,

Assuming \overrightarrow{AB} = \begin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix},

we have: \overrightarrow{AX} = \begin{pmatrix} 3 \ -15 \ -5 \end{pmatrix} \ = 2 \begin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix} .

The above forms the basis for two linear equations to derive B's two position vectors. Substituting the vector values provides:

  1. |\overrightarrow{B}| = 2 \text{ for the first position vector.}
  2. |\overrightarrow{B}| = -2 \text{ for the second position vector.}

The values of B hence can be obtained from inputting the derived values.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;