Photo AI

Using the substitution $u = ext{cos} \, x + 1$, or otherwise, show that $$\int_{0}^{\frac{\pi}{2}} e^{\text{cos} \, x} \sin \, x \, dx = e(e - 1)$$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 6

Question icon

Question 4

Using-the-substitution-$u-=--ext{cos}-\,-x-+-1$,-or-otherwise,-show-that-$$\int_{0}^{\frac{\pi}{2}}-e^{\text{cos}-\,-x}-\sin-\,-x-\,-dx-=-e(e---1)$$-Edexcel-A-Level Maths Pure-Question 4-2010-Paper 6.png

Using the substitution $u = ext{cos} \, x + 1$, or otherwise, show that $$\int_{0}^{\frac{\pi}{2}} e^{\text{cos} \, x} \sin \, x \, dx = e(e - 1)$$

Worked Solution & Example Answer:Using the substitution $u = ext{cos} \, x + 1$, or otherwise, show that $$\int_{0}^{\frac{\pi}{2}} e^{\text{cos} \, x} \sin \, x \, dx = e(e - 1)$$ - Edexcel - A-Level Maths Pure - Question 4 - 2010 - Paper 6

Step 1

Using the substitution $u = \text{cos} \, x + 1$

96%

114 rated

Answer

To solve the integral, we start with the substitution given in the question: let u=cosx+1.u = \text{cos} \, x + 1.

Next, we differentiate to find (dx) in terms of (du): dudx=sinx    dx=dusinx.\frac{du}{dx} = -\sin \, x\implies dx = \frac{du}{-\sin \, x}.

Now, substitute this into the integral:

ecosxsinxdx=eu1(du)=eu1du.\int e^{\text{cos} \, x} \sin \, x \, dx = \int e^{u - 1} (-du) = -\int e^{u - 1} du.

Step 2

Compute the integral

99%

104 rated

Answer

Now, we compute the integral:

eu1du=eu1+C=ecosx+C.-\int e^{u - 1} du = -e^{u - 1} + C = -e^{\text{cos} \, x} + C.

Next, we apply the limits from 0 to (\frac{\pi}{2}):

[ecosx]0π2=ecos(π2)+ecos(0)=e0+e1=(1)+e=e1.\left[-e^{\text{cos} \, x}\right]_{0}^{\frac{\pi}{2}} = -e^{\text{cos} \left(\frac{\pi}{2}\right)} + e^{\text{cos}(0)} = -e^0 + e^1 = -(1) + e = e - 1.

Step 3

Final result

96%

101 rated

Answer

We can summarize the result:

0π2ecosxsinxdx=e(e1).\int_{0}^{\frac{\pi}{2}} e^{\text{cos} \, x} \sin \, x \, dx = e(e - 1).

Thus, we have shown the required result.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;