The general term in the binomial expansion of (a+2x)7 is given by:
Tk=(rn)an−r(2x)r
where n=7 and r=4. So,
T4=(47)a7−4(2x)4=(47)a3(24x4)
Calculating \binom{7}{4}$, we have:
(47)=4!(7−4)!7!=4!3!7!=35
Thus, the term becomes:
T4=35a3(16x4)=560a3x4