Photo AI

6. Differentiate with respect to x, (i) e^{3x} (sin x + 2 cos x), (ii) x^{3} ln(5x + 2) - Edexcel - A-Level Maths Pure - Question 1 - 2008 - Paper 5

Question icon

Question 1

6.-Differentiate-with-respect-to-x,----(i)-e^{3x}-(sin-x-+-2-cos-x),----(ii)-x^{3}-ln(5x-+-2)-Edexcel-A-Level Maths Pure-Question 1-2008-Paper 5.png

6. Differentiate with respect to x, (i) e^{3x} (sin x + 2 cos x), (ii) x^{3} ln(5x + 2). Given that y = \frac{3x^{2} + 6x - 7}{(x + 1)^{2}}, \ x \neq -1, (b) s... show full transcript

Worked Solution & Example Answer:6. Differentiate with respect to x, (i) e^{3x} (sin x + 2 cos x), (ii) x^{3} ln(5x + 2) - Edexcel - A-Level Maths Pure - Question 1 - 2008 - Paper 5

Step 1

(i) e^{3x} (sin x + 2 cos x)

96%

114 rated

Answer

To differentiate the function, we apply the product rule. Let:

  • u = e^{3x}
  • v = (sin x + 2 cos x)

Then, the product rule states:

ddx(uv)=udvdx+vdudx\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}

Calculating each component:

  • (\frac{du}{dx} = 3e^{3x})
  • (\frac{dv}{dx} = cos x - 2 sin x)

Substituting back, we get:

ddx(e3x(sinx+2cosx))=e3x(cosx2sinx)+(sinx+2cosx)(3e3x)\frac{d}{dx}(e^{3x} (sin x + 2 cos x)) = e^{3x}(cos x - 2 sin x) + (sin x + 2 cos x)(3e^{3x})

Thus, combining the results, the derivative is:

=e3x(sinx+2cosx)(3)+e3x(cosx2sinx).= e^{3x} (sin x + 2 cos x) (3) + e^{3x}(cos x - 2 sin x).

Step 2

(ii) x^{3} ln(5x + 2)

99%

104 rated

Answer

For the differentiation, we again apply the product rule. Let:

  • u = x^{3}
  • v = ln(5x + 2).

Then,

ddx(uv)=udvdx+vdudx\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}

Calculating each component:

  • (\frac{du}{dx} = 3x^{2})
  • (\frac{dv}{dx} = \frac{5}{5x + 2})

Substituting back, we get:

ddx(x3ln(5x+2))=x355x+2+ln(5x+2)(3x2).\frac{d}{dx}(x^{3} ln(5x + 2)) = x^{3}\frac{5}{5x + 2} + ln(5x + 2)(3x^{2}).

Step 3

show that \frac{dy}{dx} = \frac{20}{(x + 1)^{3}}

96%

101 rated

Answer

Starting with:

y=3x2+6x7(x+1)2y = \frac{3x^{2} + 6x - 7}{(x + 1)^{2}}

We apply the quotient rule:

dydx=(uvuv)v2\frac{dy}{dx} = \frac{(u'v - uv')}{v^2}

where:

  • u = 3x^{2} + 6x - 7
  • v = (x + 1)^{2}.

Calculating derivatives:

  • (u' = 6x + 6)
  • (v' = 2(x + 1))

Thus,

Substituting yields:

dydx=(6x+6)(x+1)2(3x2+6x7)2(x+1)(x+1)4.\frac{dy}{dx} = \frac{(6x + 6)(x + 1)^{2} - (3x^{2} + 6x - 7)2(x + 1)}{(x + 1)^{4}}.

Simplifying gives:

=20(x+1)3.= \frac{20}{(x + 1)^{3}}.

Step 4

Hence find \frac{d^{2}y}{dx^{2}} and the real values of x for which \frac{dy}{dx} = \frac{15}{4}.

98%

120 rated

Answer

From the derivative derived previously:

  1. The second derivative, \frac{d^{2}y}{dx^{2}} = \frac{d}{dx}\left(\frac{20}{(x + 1)^{3}}\right).

Using the quotient rule again:

d2ydx2=60(x+1)4.\frac{d^{2}y}{dx^{2}} = -\frac{60}{(x + 1)^{4}}.

  1. To find where (\frac{dy}{dx} = \frac{15}{4},)

Set:

20(x+1)3=154.\frac{20}{(x + 1)^{3}} = \frac{15}{4}.

Cross multiply and solve:

80=15(x+1)3,80 = 15(x + 1)^{3},

Then,

x=1 or x=3.x = -1 \text{ or } x = -3.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;