Photo AI

5. (a) Expand \( \frac{1}{\sqrt{4-3x}} \), where \(|x| < \frac{1}{3}\), in ascending powers of \(x\) up to and including the term in \(x^2\) - Edexcel - A-Level Maths Pure - Question 7 - 2008 - Paper 7

Question icon

Question 7

5.-(a)-Expand-\(-\frac{1}{\sqrt{4-3x}}-\),-where-\(|x|-<-\frac{1}{3}\),-in-ascending-powers-of-\(x\)-up-to-and-including-the-term-in-\(x^2\)-Edexcel-A-Level Maths Pure-Question 7-2008-Paper 7.png

5. (a) Expand \( \frac{1}{\sqrt{4-3x}} \), where \(|x| < \frac{1}{3}\), in ascending powers of \(x\) up to and including the term in \(x^2\). Simplify each term. (b... show full transcript

Worked Solution & Example Answer:5. (a) Expand \( \frac{1}{\sqrt{4-3x}} \), where \(|x| < \frac{1}{3}\), in ascending powers of \(x\) up to and including the term in \(x^2\) - Edexcel - A-Level Maths Pure - Question 7 - 2008 - Paper 7

Step 1

Expand \( \frac{1}{\sqrt{4-3x}} \) in ascending powers of \(x\)

96%

114 rated

Answer

To expand ( \frac{1}{\sqrt{4-3x}} ), we first rewrite it as:

14113x4=12(13x4)12\frac{1}{\sqrt{4}} \cdot \frac{1}{\sqrt{1-\frac{3x}{4}}} = \frac{1}{2} \cdot (1-\frac{3x}{4})^{-\frac{1}{2}}

Now, we use the binomial expansion formula ((1 + u)^{n} \approx 1 + nu + \frac{n(n-1)}{2}u^2 + ...) where (u = -\frac{3x}{4}) and (n = -\frac{1}{2}):

12(1+12(3x4)+12(341)2!(3x4)2)\Rightarrow \frac{1}{2} \left(1 + -\frac{1}{2}\left(-\frac{3x}{4}\right) + \frac{-\frac{1}{2}(-\frac{3}{4}-1)}{2!}\left(-\frac{3x}{4}\right)^2\right)

Calculating the series:

  1. First term: ( \frac{1}{2} )
  2. Second term: ( -\frac{1}{2} \cdot -\frac{3x}{4} = \frac{3x}{8} )
  3. Third term: ( \frac{-\frac{1}{2} \cdot -\frac{1}{4}}{2} \left(-\frac{3x}{4}\right)^2 = \frac{3^2x^2}{2\cdot4^2} = \frac{27x^2}{256} )

So, the expansion gives:

12+3x8+27x2256\frac{1}{2} + \frac{3x}{8} + \frac{27x^2}{256}

Step 2

Find the first 3 terms in the expansion of \( \sqrt{x+8} \)

99%

104 rated

Answer

To find the first three terms of ( \sqrt{x+8} ), we first rewrite it as ( \sqrt{8(1 + \frac{x}{8})} = 2\sqrt{2} \sqrt{1 + \frac{x}{8}} ).

Using the binomial expansion for ( \sqrt{1+u} ) where ( u = \frac{x}{8} ):

1+u1+12u18u2\sqrt{1 + u} \approx 1 + \frac{1}{2}u - \frac{1}{8}u^2

Substituting ( u ):

1+x81+12(x8)18(x8)2=1+x16x2512\sqrt{1 + \frac{x}{8}} \approx 1 + \frac{1}{2}\left(\frac{x}{8}\right) - \frac{1}{8}\left(\frac{x}{8}\right)^2 = 1 + \frac{x}{16} - \frac{x^2}{512}.

Thus:

x+822(1+x16x2512)=22+2216x22512x2\sqrt{x+8} \approx 2\sqrt{2}\left(1 + \frac{x}{16} - \frac{x^2}{512}\right) = 2\sqrt{2} + \frac{2\sqrt{2}}{16}x - \frac{2\sqrt{2}}{512}x^2.

Therefore, the first three terms are:

22+28x2256x22\sqrt{2} + \frac{\sqrt{2}}{8}x - \frac{\sqrt{2}}{256}x^2.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;