Get detailed information about SimpleStudy's offerings for schools.
We can give expert advice on our plans and what will be the best option for your school.
Photo AI
Question 3
Use integration to find the exact value of $$\int_0^{\frac{\pi}{2}} x \sin 2x \, dx$$
Step 1
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To solve this integral, we will use integration by parts. We let:
u=x ⇒ du=dxu = x \, \Rightarrow \, du = dxu=x⇒du=dx dv=sin2x dx⇒v=−12cos2xdv = \sin 2x \, dx \Rightarrow v = -\frac{1}{2} \cos 2xdv=sin2xdx⇒v=−21cos2x
Applying integration by parts formula,\n∫u dv=uv−∫v du\int u \, dv = uv - \int v \, du∫udv=uv−∫vdu
We get:
∫xsin2x dx=−x2cos2x+12∫cos2x dx\int x \sin 2x \, dx = -\frac{x}{2} \cos 2x + \frac{1}{2} \int \cos 2x \, dx∫xsin2xdx=−2xcos2x+21∫cos2xdx
Step 2
99%
104 rated
The integral of (\cos 2x) is: ∫cos2x dx=12sin2x+C\int \cos 2x \, dx = \frac{1}{2} \sin 2x + C∫cos2xdx=21sin2x+C
Thus, we have: ∫xsin2x dx=−x2cos2x+14sin2x\int x \sin 2x \, dx = -\frac{x}{2} \cos 2x + \frac{1}{4} \sin 2x∫xsin2xdx=−2xcos2x+41sin2x
Step 3
101 rated
Now, we will evaluate the integral from 0 to (\frac{\pi}{2}):
[−x2cos2x+14sin2x]0π2\left[ -\frac{x}{2} \cos 2x + \frac{1}{4} \sin 2x \right]_0^{\frac{\pi}{2}}[−2xcos2x+41sin2x]02π
Evaluating at the bounds gives: At (x = \frac{\pi}{2}):\n−π22cosπ+14sinπ=π4-\frac{\frac{\pi}{2}}{2} \cos \pi + \frac{1}{4} \sin \pi = \frac{\pi}{4}−22πcosπ+41sinπ=4π\n At (x = 0):\n000
Thus, the value of the definite integral is: π4−0=π4\frac{\pi}{4} - 0 = \frac{\pi}{4}4π−0=4π
Report Improved Results
Recommend to friends
Students Supported
Questions answered