Photo AI

8. (i) Prove that $$ ext{sec}^2 x - ext{cosec}^2 x = an^2 x - ext{cot}^2 x.$$ (ii) Given that $$y = ext{arccos} x, -1 eq x eq 1 ext{ and } 0 eq y eq ext{pi}.$$ (a) express $ ext{arcsin} x$ in terms of $y$ - Edexcel - A-Level Maths Pure - Question 1 - 2006 - Paper 6

Question icon

Question 1

8.-(i)-Prove-that---$$-ext{sec}^2-x----ext{cosec}^2-x-=--an^2-x----ext{cot}^2-x.$$---(ii)-Given-that---$$y-=--ext{arccos}-x,--1--eq-x--eq-1--ext{-and-}-0--eq-y--eq--ext{pi}.$$---(a)-express-$-ext{arcsin}-x$-in-terms-of-$y$-Edexcel-A-Level Maths Pure-Question 1-2006-Paper 6.png

8. (i) Prove that $$ ext{sec}^2 x - ext{cosec}^2 x = an^2 x - ext{cot}^2 x.$$ (ii) Given that $$y = ext{arccos} x, -1 eq x eq 1 ext{ and } 0 eq y eq ... show full transcript

Worked Solution & Example Answer:8. (i) Prove that $$ ext{sec}^2 x - ext{cosec}^2 x = an^2 x - ext{cot}^2 x.$$ (ii) Given that $$y = ext{arccos} x, -1 eq x eq 1 ext{ and } 0 eq y eq ext{pi}.$$ (a) express $ ext{arcsin} x$ in terms of $y$ - Edexcel - A-Level Maths Pure - Question 1 - 2006 - Paper 6

Step 1

Prove that \( \text{sec}^2 x - \text{cosec}^2 x = \tan^2 x - \text{cot}^2 x \)

96%

114 rated

Answer

To prove this identity, we start by rewriting the left-hand side (LHS):
sec2xcosec2x=1cos2x1sin2x\text{sec}^2 x - \text{cosec}^2 x = \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x}
Finding a common denominator gives us:
=sin2xcos2xsin2xcos2x= \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x}
Now, the right-hand side (RHS):
tan2xcot2x=sin2xcos2xcos2xsin2x\tan^2 x - \text{cot}^2 x = \frac{\sin^2 x}{\cos^2 x} - \frac{\cos^2 x}{\sin^2 x}
Again, we find a common denominator:
=sin4xcos4xsin2xcos2x= \frac{\sin^4 x - \cos^4 x}{\sin^2 x \cos^2 x}
Recalling that ( \sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x) ), and since ( \sin^2 x + \cos^2 x = 1 ):
=sin2xcos2xsin2xcos2x= \frac{\sin^2 x - \cos^2 x}{\sin^2 x \cos^2 x}
Thus, both sides are equal, proving the identity.

Step 2

express arcsin x in terms of y

99%

104 rated

Answer

Given ( y = \text{arccos} x ), we can find ( x ) in terms of ( y ):
x=cosyx = \cos y
Now, using the fundamental Pythagorean identity, we have:
sin2y+cos2y=1sin2y=1x2=1cos2y\sin^2 y + \cos^2 y = 1 \Rightarrow \sin^2 y = 1 - x^2 = 1 - \cos^2 y
This implies:
siny=1cos2y=sin2y=siny\sin y = \sqrt{1 - \cos^2 y} = \sqrt{\sin^2 y} = \sin y
Thus,
arcsinx=y=π2y\text{arcsin} x = y = \frac{\pi}{2} - y.

Step 3

Hence evaluate arccos x + arcsin x

96%

101 rated

Answer

From earlier, we know that:
arccosx+arcsinx=y+(π2y)\text{arccos} x + \text{arcsin} x = y + \left(\frac{\pi}{2} - y\right)
This simplifies to:
=π2= \frac{\pi}{2}
Hence,
arccosx+arcsinx=π2.\text{arccos} x + \text{arcsin} x = \frac{\pi}{2}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;