Photo AI

Given that $y = ext{sec} \, x$, complete the table with the values of $y$ corresponding to $x = \frac{\pi}{16}$, $\frac{\pi}{8}$ and $\frac{\pi}{4}$ - Edexcel - A-Level Maths Pure - Question 5 - 2006 - Paper 7

Question icon

Question 5

Given-that-$y-=--ext{sec}-\,-x$,-complete-the-table-with-the-values-of-$y$-corresponding-to-$x-=-\frac{\pi}{16}$,-$\frac{\pi}{8}$-and-$\frac{\pi}{4}$-Edexcel-A-Level Maths Pure-Question 5-2006-Paper 7.png

Given that $y = ext{sec} \, x$, complete the table with the values of $y$ corresponding to $x = \frac{\pi}{16}$, $\frac{\pi}{8}$ and $\frac{\pi}{4}$. | x ... show full transcript

Worked Solution & Example Answer:Given that $y = ext{sec} \, x$, complete the table with the values of $y$ corresponding to $x = \frac{\pi}{16}$, $\frac{\pi}{8}$ and $\frac{\pi}{4}$ - Edexcel - A-Level Maths Pure - Question 5 - 2006 - Paper 7

Step 1

Complete the table

96%

114 rated

Answer

To find the values of y=extsecxy = ext{sec} \, x for the given xx values:

  1. For x=π16x = \frac{\pi}{16}:

    y=sec(π16)1.01959y = \text{sec} \left( \frac{\pi}{16} \right) \approx 1.01959

  2. For x=π8x = \frac{\pi}{8}:

    y=sec(π8)1.08239y = \text{sec} \left( \frac{\pi}{8} \right) \approx 1.08239

  3. For x=3π16x = \frac{3\pi}{16}:

    y=sec(3π16)1.20269y = \text{sec} \left( \frac{3\pi}{16} \right) \approx 1.20269

  4. For x=π4x = \frac{\pi}{4}:

    y=sec(π4)1.41421y = \text{sec} \left( \frac{\pi}{4} \right) \approx 1.41421

Step 2

Use the trapezium rule

99%

104 rated

Answer

To estimate secxdx\int \sec \, x \, dx using the trapezium rule:

[ I \approx \frac{1}{2} \times \frac{\pi}{16} \left(1 + 1.01959 + 1.08239 + 1.20269 + 1.41421 \right)
]

[
= \frac{\pi}{32} \left(9.02355 \right) \approx 0.8859
]

Step 3

Calculate the % error

96%

101 rated

Answer

The exact value of the integral is ln(1+2)0.88137\ln(1 + \sqrt{2}) \approx 0.88137.

To calculate the percentage error:

[
\text{Percentage error} = \frac{|\text{approx} - \text{exact}|}{\text{exact}} \times 100
]
Substituting in the values gives:

[
\text{Percentage error} = \frac{|0.8859 - 0.88137|}{0.88137} \times 100 \approx 0.51 %
]

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;