Photo AI

8. (a) Simplify fully $$\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}$$ (3) Given that $$\ln(2x^2 + 9x - 5) = 1 + \ln(x^2 + 2x - 15), \quad x \neq -5,$$ (b) find x in terms of e - Edexcel - A-Level Maths Pure - Question 2 - 2010 - Paper 2

Question icon

Question 2

8.-(a)-Simplify-fully--$$\frac{2x^2-+-9x---5}{x^2-+-2x---15}$$--(3)--Given-that--$$\ln(2x^2-+-9x---5)-=-1-+-\ln(x^2-+-2x---15),-\quad-x-\neq--5,$$--(b)-find-x-in-terms-of-e-Edexcel-A-Level Maths Pure-Question 2-2010-Paper 2.png

8. (a) Simplify fully $$\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}$$ (3) Given that $$\ln(2x^2 + 9x - 5) = 1 + \ln(x^2 + 2x - 15), \quad x \neq -5,$$ (b) find x in ter... show full transcript

Worked Solution & Example Answer:8. (a) Simplify fully $$\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}$$ (3) Given that $$\ln(2x^2 + 9x - 5) = 1 + \ln(x^2 + 2x - 15), \quad x \neq -5,$$ (b) find x in terms of e - Edexcel - A-Level Maths Pure - Question 2 - 2010 - Paper 2

Step 1

(a) Simplify fully

96%

114 rated

Answer

To simplify the expression 2x2+9x5x2+2x15\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}, we will first factor both the numerator and denominator.

  1. Factor the numerator:

    • The expression 2x2+9x52x^2 + 9x - 5 factors into (2x1)(x+5) (2x - 1)(x + 5).
  2. Factor the denominator:

    • The expression x2+2x15x^2 + 2x - 15 factors into (x+5)(x3)(x + 5)(x - 3).
  3. Rewrite the original expression:

    • Therefore, we can rewrite the fraction as: (2x1)(x+5)(x+5)(x3)\frac{(2x - 1)(x + 5)}{(x + 5)(x - 3)}.
  4. Cancel the common factor:

    • The (x+5)(x + 5) cancels out, resulting in: 2x1x3\frac{2x - 1}{x - 3}.

Thus, the simplified expression is: 2x1x3\frac{2x - 1}{x - 3}.

Step 2

(b) find x in terms of e.

99%

104 rated

Answer

To solve for x, we start with the given equation:

ln(2x2+9x5)=1+ln(x2+2x15).\ln(2x^2 + 9x - 5) = 1 + \ln(x^2 + 2x - 15).

  1. Isolate the logarithmic expressions:

    • Rewrite the equation as: ln(2x2+9x5)ln(x2+2x15)=1.\ln(2x^2 + 9x - 5) - \ln(x^2 + 2x - 15) = 1.
      This simplifies further to: ln(2x2+9x5x2+2x15)=1.\ln\left(\frac{2x^2 + 9x - 5}{x^2 + 2x - 15}\right) = 1.
  2. Exponentiate both sides:

    • Converting from logarithmic form gives: 2x2+9x5x2+2x15=e1=e.\frac{2x^2 + 9x - 5}{x^2 + 2x - 15} = e^{1} = e.
  3. Cross-multiply:

    • This leads to: 2x2+9x5=e(x2+2x15).2x^2 + 9x - 5 = e(x^2 + 2x - 15).
  4. Expand and arrange the equation:

    • Thus: 2x2+9x5=ex2+2ex15e.2x^2 + 9x - 5 = ex^2 + 2ex - 15e. Rearranging gives: (2e)x2+(92e)x+(15e5)=0.(2 - e)x^2 + (9 - 2e)x + (15e - 5) = 0.
  5. Use the quadratic formula:

    • From the quadratic formula, we find: x=(92e)±(92e)24(2e)(15e5)2(2e).x = \frac{-(9 - 2e) \pm \sqrt{(9 - 2e)^2 - 4(2 - e)(15e - 5)}}{2(2 - e)}.

Thus, the value of x in terms of e is: x=2e9±(92e)24(2e)(15e5)2(2e).x = \frac{2e - 9 \pm \sqrt{(9 - 2e)^2 - 4(2 - e)(15e - 5)}}{2(2 - e)}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;