Photo AI

Solve, for $0 \leq \theta < 180^{\circ}$ $$\sin(2\theta - 30^{\circ}) + 1 = 0.4$$ giving your answers to 1 decimal place - Edexcel - A-Level Maths Pure - Question 2 - 2013 - Paper 6

Question icon

Question 2

Solve,-for-$0-\leq-\theta-<-180^{\circ}$--$$\sin(2\theta---30^{\circ})-+-1-=-0.4$$--giving-your-answers-to-1-decimal-place-Edexcel-A-Level Maths Pure-Question 2-2013-Paper 6.png

Solve, for $0 \leq \theta < 180^{\circ}$ $$\sin(2\theta - 30^{\circ}) + 1 = 0.4$$ giving your answers to 1 decimal place. (ii) Find all the values of $x$, in the ... show full transcript

Worked Solution & Example Answer:Solve, for $0 \leq \theta < 180^{\circ}$ $$\sin(2\theta - 30^{\circ}) + 1 = 0.4$$ giving your answers to 1 decimal place - Edexcel - A-Level Maths Pure - Question 2 - 2013 - Paper 6

Step 1

sin(2θ - 30°) + 1 = 0.4

96%

114 rated

Answer

Starting from the equation:

sin(2θ30)+1=0.4\sin(2\theta - 30^{\circ}) + 1 = 0.4

we can rearrange it to:

sin(2θ30)=0.41\sin(2\theta - 30^{\circ}) = 0.4 - 1 sin(2θ30)=0.6\sin(2\theta - 30^{\circ}) = -0.6

Now we find the angle for which the sine value is -0.6. Since sine is negative in the third and fourth quadrants, we can express this as:

  1. The reference angle: θref=arcsin(0.6)36.9\theta_{ref} = \arcsin(0.6) \approx 36.9^{\circ}

  2. This gives us two angles for 2θ302\theta - 30^{\circ}:

  • Third quadrant: 2θ30=180+36.9 2θ=216.8 θ=108.42\theta - 30^{\circ} = 180^{\circ} + 36.9^{\circ} \ 2\theta = 216.8^{\circ} \ \theta = 108.4^{\circ}
  • Fourth quadrant: 2θ30=36036.9 2θ=323.1 θ=161.552\theta - 30^{\circ} = 360^{\circ} - 36.9^{\circ} \ 2\theta = 323.1^{\circ} \ \theta = 161.55^{\circ}

Thus, the solutions for θ\theta in the interval [0,180)[0, 180^{\circ}) are:

  • θ108.4\theta \approx 108.4^{\circ}
  • θ161.6\theta \approx 161.6^{\circ}.

Step 2

Find all the values of x, in the interval 0 ≤ x < 360°, for which 9cos²x - 11cosx + 3sin²x = 0

99%

104 rated

Answer

To solve the equation:

9cos2x11cosx+3sin2x=09\cos^{2}x - 11\cos x + 3\sin^{2}x = 0

we know that sin2x=1cos2x\sin^{2}x = 1 - \cos^{2}x, which allows us to express everything in terms of cosx\cos x:

Substituting gives:

9cos2x11cosx+3(1cos2x)=09\cos^{2}x - 11\cos x + 3(1 - \cos^{2}x) = 0 9cos2x11cosx+33cos2x=09\cos^{2}x - 11\cos x + 3 - 3\cos^{2}x = 0 6cos2x11cosx+3=06\cos^{2}x - 11\cos x + 3 = 0

Next, we can apply the quadratic formula to solve for cosx\cos x:

cosx=b±b24ac2a\cos x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} where a=6a = 6, b=11b = -11, and c=3c = 3:

cosx=11±(11)246326\cos x = \frac{11 \pm \sqrt{(-11)^{2} - 4 \cdot 6 \cdot 3}}{2 \cdot 6} =11±1217212= \frac{11 \pm \sqrt{121 - 72}}{12} =11±4912= \frac{11 \pm \sqrt{49}}{12} =11±712= \frac{11 \pm 7}{12}

This gives us two values:

  1. cosx=1812=1.5\cos x = \frac{18}{12} = 1.5 (not valid, as cosx\cos x must be in [1-1, 11])
  2. cosx=412=13\cos x = \frac{4}{12} = \frac{1}{3}

Now, to find xx, we have:

x=arccos(13)70.5x = \arccos\left(\frac{1}{3}\right) \approx 70.5^{\circ}

The second solution in the range [0,360)[0, 360^{\circ}) is given by:

x=36070.5289.5x = 360^{\circ} - 70.5^{\circ} \approx 289.5^{\circ}

Thus, the solutions for xx are:

  • x70.5x \approx 70.5^{\circ}
  • x289.5x \approx 289.5^{\circ}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;