Photo AI

4. (a) Express $$ ext{lim}_{eta o 0} rac{2}{eta} extstyle extstyle extsum_{x=2.1}^{6.3} ext{dx}$$ as an integral - Edexcel - A-Level Maths Pure - Question 6 - 2022 - Paper 1

Question icon

Question 6

4.-(a)-Express--$$-ext{lim}_{eta--o-0}--rac{2}{eta}--extstyle--extstyle--extsum_{x=2.1}^{6.3}--ext{dx}$$-as-an-integral-Edexcel-A-Level Maths Pure-Question 6-2022-Paper 1.png

4. (a) Express $$ ext{lim}_{eta o 0} rac{2}{eta} extstyle extstyle extsum_{x=2.1}^{6.3} ext{dx}$$ as an integral. (b) Hence show that $$ ext{lim}_{eta o... show full transcript

Worked Solution & Example Answer:4. (a) Express $$ ext{lim}_{eta o 0} rac{2}{eta} extstyle extstyle extsum_{x=2.1}^{6.3} ext{dx}$$ as an integral - Edexcel - A-Level Maths Pure - Question 6 - 2022 - Paper 1

Step 1

Express $$ ext{lim}_{eta o 0} rac{2}{eta} extstyle extsum_{x=2.1}^{6.3} ext{dx}$$ as an integral.

96%

114 rated

Answer

To express the limit as an integral, we recognize that the summation can be approximated as follows:

We can interpret the summation as a Riemann sum: ext{lim}_{eta o 0} rac{2}{eta} extstyle extsum_{x=2.1}^{6.3} ext{dx} = ext{lim}_{n o ext{∞}} extstyle extsum_{i=1}^{n} f(x_i) riangle x

Here, we define:

  • f(x)=2f(x) = 2 (the value being summed)
  • riangle x = rac{3.2}{n} (the width of each subinterval)

Thus, the above summation can be expressed as: ext{lim}_{n o ext{∞}} extsum_{i=1}^{n} f(x_i) riangle x = ext{lim}_{eta o 0} rac{2}{eta} extstyle extsum_{x=2.1}^{6.3} ext{dx} = extstyle extint_{2.1}^{6.3} 2 ext{dx}

where the limits 2.1 and 6.3 represent the bounds of integration.

Step 2

Hence show that $$ ext{lim}_{eta o 0} rac{2}{eta} extstyle extsum_{x=2.1}^{6.3} ext{dx} = ext{ln} k$$ where k is a constant to be found.

99%

104 rated

Answer

Starting from the integral we just found:

extstyleextint2.16.32extdx extstyle extint_{2.1}^{6.3} 2 ext{dx}

Evaluating this definite integral:

=2[x]2.16.3= 2 [x]_{2.1}^{6.3} =2(6.32.1)= 2(6.3 - 2.1) =2imes4.2=8.4= 2 imes 4.2 = 8.4

We can express this result in terms of logarithms:

Since we need to demonstrate that the limit equals to ln(k), we consider: k=e8.4k = e^{8.4}

Therefore, we find: extlnk=8.4 ext{ln} k = 8.4.

Thus, concluding that: ext{lim}_{eta o 0} rac{2}{eta} extstyle extsum_{x=2.1}^{6.3} ext{dx} ext{ equals } ext{ln}(e^{8.4}) ext{, confirming } k = e^{8.4}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;