Photo AI

12. (a) Solve, for -180° < x < 180°, the equation 3 sin²x + sin x + 8 = 9 cos²x giving your answers to 2 decimal places - Edexcel - A-Level Maths Pure - Question 14 - 2017 - Paper 2

Question icon

Question 14

12.-(a)-Solve,-for---180°-<-x-<-180°,-the-equation--3-sin²x-+-sin-x-+-8-=-9-cos²x--giving-your-answers-to-2-decimal-places-Edexcel-A-Level Maths Pure-Question 14-2017-Paper 2.png

12. (a) Solve, for -180° < x < 180°, the equation 3 sin²x + sin x + 8 = 9 cos²x giving your answers to 2 decimal places. (b) Hence find the smallest positive sol... show full transcript

Worked Solution & Example Answer:12. (a) Solve, for -180° < x < 180°, the equation 3 sin²x + sin x + 8 = 9 cos²x giving your answers to 2 decimal places - Edexcel - A-Level Maths Pure - Question 14 - 2017 - Paper 2

Step 1

Solve, for -180° < x < 180°, the equation

96%

114 rated

Answer

To solve the equation, we can substitute the identity for cosine:

extcos2x=1extsin2x ext{cos}^2x = 1 - ext{sin}^2x

Substituting this into the equation:

3extsin2x+extsinx+8=9(1extsin2x)3 ext{sin}^2x + ext{sin} x + 8 = 9(1 - ext{sin}^2x)

Rearranging gives:

12extsin2x+extsinx1=012 ext{sin}^2x + ext{sin} x - 1 = 0

Next, we can use the quadratic formula to solve for sin x:

extsinx=b±b24ac2a ext{sin} x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

where a = 12, b = 1, and c = -1.

This simplifies to:

extsinx=1±124(12)(1)2(12)=1±1+4824=1±724 ext{sin} x = \frac{-1 \pm \sqrt{1^2 - 4(12)(-1)}}{2(12)} = \frac{-1 \pm \sqrt{1 + 48}}{24} = \frac{-1 \pm 7}{24}

Calculating the two possible values:

  1. sinx=624=14(Value 1) \text{sin} x = \frac{6}{24} = \frac{1}{4} \\ \text{(Value 1)}
  2. sinx=824=13(Value 2) \text{sin} x = \frac{-8}{24} = -\frac{1}{3} \\ \text{(Value 2)}

Now using arcsin, we find:

For Value 1: x=extarcsin(14)=14.48°x = ext{arcsin}(\frac{1}{4}) = 14.48°

For Value 2: x=extarcsin(13)    x=19.47°extandx=180°(19.47°)=160.53°x = ext{arcsin}(-\frac{1}{3}) \implies x = -19.47° \\ ext{and } x = 180° - (-19.47°) = 160.53°

Thus, the solutions for x are: x=14.48°,19.47°,160.53°x = 14.48°, -19.47°, 160.53°

Step 2

Hence find the smallest positive solution of the equation

99%

104 rated

Answer

For the equation:

3sin(20°30°)+sin(20°30°)+8=9cos(20°30°)3\text{sin}(20° - 30°) + \text{sin}(20° - 30°) + 8 = 9\text{cos}(20° - 30°)

First, simplify the angle:

20°30°=10°20° - 30° = -10°

Thus the equation becomes:

3sin(10°)+sin(10°)+8=9cos(10°)3\text{sin}(-10°) + \text{sin}(-10°) + 8 = 9\text{cos}(-10°)

Since sin(θ)=sin(θ)\text{sin}(-θ) = -\text{sin}(θ) and cos(θ)=cos(θ)\text{cos}(-θ) = \text{cos}(θ), this leads to:

3sin(10°)sin(10°)+8=9cos(10°)-3\text{sin}(10°) - \text{sin}(10°) + 8 = 9\text{cos}(10°)

Combining terms gives:

4sin(10°)+8=9cos(10°)-4\text{sin}(10°) + 8 = 9\text{cos}(10°)

Rearranging gives:

9cos(10°)+4sin(10°)=89\text{cos}(10°) + 4\text{sin}(10°) = 8

Next, solve for the value. Calculate:

a. 9cos(10°)9\text{cos}(10°)

b. 4sin(10°)4\text{sin}(10°)

By solving this, we find the smallest positive solution:

θ=5.26°θ = 5.26°

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;