Photo AI

In this question you should show all stages of your working - Edexcel - A-Level Maths Pure - Question 12 - 2021 - Paper 1

Question icon

Question 12

In-this-question-you-should-show-all-stages-of-your-working-Edexcel-A-Level Maths Pure-Question 12-2021-Paper 1.png

In this question you should show all stages of your working. Solutions relying entirely on calculator technology are not acceptable. (a) Given that $1 + ext{cos}2 ... show full transcript

Worked Solution & Example Answer:In this question you should show all stages of your working - Edexcel - A-Level Maths Pure - Question 12 - 2021 - Paper 1

Step 1

Given that $1 + \text{cos}2\theta + \text{sin}2\theta \neq 0$ prove that $$\frac{1 - \text{cos}2\theta + \text{sin}2\theta}{1 + \text{cos}2\theta + \text{sin}2\theta} = \tan \theta$$

96%

114 rated

Answer

To prove the equation, we start by applying the double angle formulae:

  1. Recall that:

    • cos2θ=2cos2θ1\text{cos}2\theta = 2\text{cos}^2\theta - 1, and
    • sin2θ=2sinθcosθ\text{sin}2\theta = 2\text{sin}\theta \text{cos}\theta.
  2. Substitute these into the original expression: 1(2cos2θ1)+2sinθcosθ1+(2cos2θ1)+2sinθcosθ\frac{1 - (2\text{cos}^2\theta - 1) + 2\text{sin}\theta \text{cos}\theta}{1 + (2\text{cos}^2\theta - 1) + 2\text{sin}\theta \text{cos}\theta}

  3. Simplifying the numerator:

    • 1+12cos2θ+2sinθcosθ=22cos2θ+2sinθcosθ1 + 1 - 2\text{cos}^2\theta + 2\text{sin}\theta \text{cos}\theta = 2 - 2\text{cos}^2\theta + 2\text{sin}\theta \text{cos}\theta.
  4. Simplifying the denominator:

    • 11+2cos2θ+2sinθcosθ=2cos2θ+2sinθcosθ1 - 1 + 2\text{cos}^2\theta + 2\text{sin}\theta \text{cos}\theta = 2\text{cos}^2\theta + 2\text{sin}\theta \text{cos}\theta.
  5. Now the fraction becomes: 22cos2θ+2sinθcosθ2cos2θ+2sinθcosθ=2(1cos2θ+sinθcosθ)2(cos2θ+sinθcosθ)=1cos2θ+sinθcosθcos2θ+sinθcosθ.\frac{2 - 2\text{cos}^2\theta + 2\text{sin}\theta \text{cos}\theta}{2\text{cos}^2\theta + 2\text{sin}\theta \text{cos}\theta} = \frac{2(1 - \text{cos}^2\theta + \text{sin}\theta \text{cos}\theta)}{2(\text{cos}^2\theta + \text{sin}\theta \text{cos}\theta)} = \frac{1 - \text{cos}^2\theta + \text{sin}\theta \text{cos}\theta}{\text{cos}^2\theta + \text{sin}\theta \text{cos}\theta}.

  6. Recognizing that 1cos2θ=sin2θ1 - \text{cos}^2\theta = \text{sin}^2\theta, we get: sin2θ+sinθcosθcos2θ+sinθcosθ=tanθ.\frac{\text{sin}^2\theta + \text{sin}\theta \text{cos}\theta}{\text{cos}^2\theta + \text{sin}\theta \text{cos}\theta} = \tan \theta.

Thus, we have proven the equation as required.

Step 2

Hence solve, for $0 < x < 180^{\circ}$ $$\frac{1 - \text{cos}4x + \text{sin}4x}{1 + \text{cos}4x + \text{sin}4x} = 3 \sin 2x$$

99%

104 rated

Answer

Using the result from part (a), we substitute tan\tan into the formula:

  1. From part (a): 1cos4x+sin4x1+cos4x+sin4x=tan(2x).\frac{1 - \text{cos}4x + \text{sin}4x}{1 + \text{cos}4x + \text{sin}4x} = \tan(2x).

  2. Therefore, we have: tan(2x)=3sin(2x).\tan(2x) = 3\sin(2x).

  3. To solve for xx, recall that: tan(2x)=sin(2x)cos(2x).\tan(2x) = \frac{\sin(2x)}{\cos(2x)}. Then, equating: sin(2x)cos(2x)=3sin(2x)    1=3cos(2x).\frac{\sin(2x)}{\cos(2x)} = 3\sin(2x) \implies 1 = 3\cos(2x).

  4. This rearranges to: cos(2x)=13.\cos(2x) = \frac{1}{3}.

  5. Now, we can find 2x2x: 2x=cos1(13) or 360cos1(13).2x = \cos^{-1}\left(\frac{1}{3}\right) \text{ or } 360^{\circ} - \cos^{-1}\left(\frac{1}{3}\right).

  6. Thus, we find: 2x70.5288extand2x289.4712.2x \approx 70.5288^{\circ} ext{ and } 2x \approx 289.4712^{\circ}. Therefore, dividing by 2 gives: x35.3extandx144.7.x \approx 35.3^{\circ} ext{ and } x \approx 144.7^{\circ}.

Finally, the solutions are:

  • x35.3x \approx 35.3^{\circ}
  • x144.7x \approx 144.7^{\circ}.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;