Photo AI

y = 5^x + ext{log}_e(x + 1), ext{ } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 2 Complete the table below, by giving the value of $y$ when $x = 1$ | $x$ | $0$ | $0.5$ | $1.5$ | $2$ | |-----|-----|-------|-------|-----| | $y$ | $1$ | $2.821$ | $12.502$ | $26.585$ | (b) Use the trapezium rule, with all the values of $y$ from the completed table, to find an approximate value for $$\int_0^2 (5^x + ext{log}_e(x + 1))dx$$ giving your answer to 2 decimal places - Edexcel - A-Level Maths Pure - Question 4 - 2016 - Paper 2

Question icon

Question 4

y-=-5^x-+--ext{log}_e(x-+-1),--ext{-}-0--ext{-}--ext{-}--ext{--}--ext{-}--ext{-}--ext{-}---ext{-}--ext{-}-2--Complete-the-table-below,-by-giving-the-value-of-$y$-when-$x-=-1$--|-$x$-|-$0$-|-$0.5$-|-$1.5$-|-$2$-|-|-----|-----|-------|-------|-----|-|-$y$-|-$1$-|-$2.821$-|-$12.502$-|-$26.585$-|--(b)-Use-the-trapezium-rule,-with-all-the-values-of-$y$-from-the-completed-table,-to-find-an-approximate-value-for--$$\int_0^2-(5^x-+--ext{log}_e(x-+-1))dx$$--giving-your-answer-to-2-decimal-places-Edexcel-A-Level Maths Pure-Question 4-2016-Paper 2.png

y = 5^x + ext{log}_e(x + 1), ext{ } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 2 Complete the table below, by giving the value of $y$ whe... show full transcript

Worked Solution & Example Answer:y = 5^x + ext{log}_e(x + 1), ext{ } 0 ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } ext{ } 2 Complete the table below, by giving the value of $y$ when $x = 1$ | $x$ | $0$ | $0.5$ | $1.5$ | $2$ | |-----|-----|-------|-------|-----| | $y$ | $1$ | $2.821$ | $12.502$ | $26.585$ | (b) Use the trapezium rule, with all the values of $y$ from the completed table, to find an approximate value for $$\int_0^2 (5^x + ext{log}_e(x + 1))dx$$ giving your answer to 2 decimal places - Edexcel - A-Level Maths Pure - Question 4 - 2016 - Paper 2

Step 1

Complete the table below, by giving the value of $y$ when $x = 1$

96%

114 rated

Answer

To calculate the value of yy at x=1x = 1, we substitute xx into the equation:

= 5 + ext{log}_e(2) \approx 5 + 0.6931 \approx 5.6931. $$ Thus, we complete the table with: | $x$ | $0$ | $0.5$ | $1$ | $1.5$ | $2$ | |-----|-----|-------|-----|-------|-----| | $y$ | $1$ | $2.821$ | $5.6931$ | $12.502$ | $26.585$ |

Step 2

Use the trapezium rule, with all the values of $y$ from the completed table, to find an approximate value for $\int_0^2 (5^x + \text{log}_e(x + 1))dx$

99%

104 rated

Answer

Using the trapezium rule:

the formula is: extAreaba2(f(a)+f(b))+i=1n1f(xi) ext{Area} \approx \frac{b-a}{2}(f(a) + f(b)) + \sum_{i=1}^{n-1} f(x_i)

Here, a=0a = 0, b=2b = 2, and yy values are as calculated above. There are 4 intervals, each of width h=0.5h = 0.5:

extArea0.52((1)+(26.585))+12(2.821+12.502)\n=0.25(1+26.585)+0.5(2.821+12.502) ext{Area} \approx \frac{0.5}{2} ((1) + (26.585)) +\frac{1}{2}(2.821 + 12.502)\n= 0.25(1 + 26.585) + 0.5(2.821 + 12.502)

Calculating this gives:

  • First part: 0.25×27.5856.896250.25 \times 27.585 \approx 6.89625,
  • Second part: 0.5×15.3237.66150.5 \times 15.323 \approx 7.6615.

Thus: Total Area6.89625+7.661514.5577514.56\text{Total Area} \approx 6.89625 + 7.6615 \approx 14.55775 \approx 14.56

Hence, the approximate value is 14.5614.56.

Step 3

Use your answer to part (b) to find an approximate value for $\int_0^2 (5 + 5^x + \text{log}_e(x + 1))dx$

96%

101 rated

Answer

In part (b), we found the approximate value for: 02(5x+loge(x+1))dx14.56\int_0^2 (5^x + \text{log}_e(x + 1))dx \approx 14.56

Now, we want to find: 02(5+5x+loge(x+1))dx=025dx+02(5x+loge(x+1))dx\int_0^2 (5 + 5^x + \text{log}_e(x + 1))dx = \int_0^2 5dx + \int_0^2 (5^x + \text{log}_e(x + 1))dx

The first integral is: 025dx=5×2=10.\int_0^2 5dx = 5 \times 2 = 10.

Therefore: 02(5+5x+loge(x+1))dx10+14.56=24.56.\int_0^2 (5 + 5^x + \text{log}_e(x + 1))dx \approx 10 + 14.56 = 24.56.

So, we approximate: 24.5624.56.24.56 \approx 24.56.

Join the A-Level students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;